“改进YOLO系列 | YOLOv7 更优训练策略:SIoU / EIoU / WIoU / Focal_xIoU 最全解析“

本文深入探讨YOLOv7的四种创新训练策略:SIoU引入softmax以优化IoU计算;EIoU利用IoM嵌入学习语义关系;WIoU通过目标面积加权改进IoU;Focal_xIoU结合Focal Loss和IoU Loss,有效应对类别不平衡。这些策略提升目标检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前,目标检测是计算机视觉领域的一个热门研究方向。YOLO(You Only Look Once)系列是目标检测领域中最流行的检测器之一。YOLOv7是YOLO系列的最新版本,在YOLOv7中新引入了四种训练策略,即SIoU、EIoU、WIoU和Focal_xIoU。

本文将详细介绍这四种训练策略,并提供相应的源代码实现。

1. SIoU

SIoU(Soft IoU)是一种新的交并比(IoU)算法。SIoU在计算IoU时使用了softmax运算,以便对IoU的计算进行加权。它可以用以下公式表示:

def iou_loss(p, t, eps=1e-6):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值