量子微观世界的不确定性随机性,并不影响宏观世界的某些确定性

        量子力学理论中是存在不确定性的,许多东西是随机的,比如电子的位置。

        这种随机性最早是一种理论上的假设,有人认可,有人不认可。爱因斯坦说,上帝不会掷色子,一生都没有承认物理世界中有些东西是随机的、不确定的。不过目前最新的物理学理论和物理学实验以及证实了这种随机性,大多数物理学家承认了这种随机性。

        世界其实是随机的,不确定的。这样一个表述,深深的影响到了许多人的世界观,并进一步影响到了他们的人生观、价值观。

        因此,我们必须要注意到,量子力学理论中,有很多东西是以无比精确的形式确定了的。

        还以电子为例,某个状态下,电子的位置不确定,但是电子的波函数是精确确定的,其背后涉及到的电子在某时刻位于某个位置的概率,是精确的固定的不变的,这个不是随机的。电子在不同能级之间跃迁时,释放出的光子的频率,是及其精确的。目前最精确的原子钟,其原理就来自于量子跃迁时,所释放的光子的频率的精确稳定性。

        接下来,我们试着做这样一个思想实验。

        在一个直径1000米的圆形操场上,有100只起始位置随机的母鸡。

        还有两只起始位置随机的老虎。

        老虎和母鸡的活动范围,都限制在这个操场的区域内。

        假设一只老虎在一个小说内,吃掉一个母鸡的概率为万分之一。

        那么经过1万个小时,大概率已经有2只母鸡被吃掉了。

        经过漫长的时间演化,操场上母鸡越来越少,最终的结局就是没有任何一个母鸡能活下来。

        操场上的母鸡数量将变成零。 

        你看,哪一只老虎,会在哪一个小时内,吃掉哪一只母鸡,完全是随机的。

        但是这个操场上母鸡越来越少,最终变为零,这是确定的。

        因此,有可能,微观世界的不确定性,可能导致宏观上某些事件的随机性,但是并不影响宏观世界另一些事情的确定性。

        好了,有没有恢复一点儿人生的信心?你是不是再次恢复了对爱情的信心?有些事是确定无疑的,就像你女朋友(男朋友)会一生一世爱你一样,不必怀疑。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值