状态反馈极点配置要求系统是可控的,所以首先用ctrb函数计算得到可控判断矩阵Lc,对可控性进行判断,接着计算可控标准型转换矩阵Tinv,计算得到可控标准型对应的A阵(Astf),计算k_hat,最后计算得到反馈增益K。
原理如下图:
可控标准型转换矩阵计算:
反馈增益计算:
function K=T2place(A,B,P)
%A,B are system matrix
%P is the desired characteristic polynomial
%(P=s^n+a_{n-1}s^{n-1}+\ldots+a_0)
%dimension of P is n+1,vector [a_n a_n-1 ....a_0]
n=length(B);
Lc=ctrb(A,B);%matrix [B AB A^2B ...]
m=rank(Lc);
if (m<n), disp('Uncontrollable'); return; end %判断可控性
[V1,D1,U1]=svd(Lc);%奇异值分解
InLc=U1*inv(D1)*V1';
gamma=InLc(n,:);
Tinv=ctrb(A',gamma')';
[V2,D2,U2]=svd(Tinv);
T=U2*inv(D2)*V2';%T是变为标准型的矩阵,书上表示为P
Astf=Tinv*A*T;%可控标准型对应的A阵
for kk=1:n %倒序
Pi(kk)=P(n+2-kk);
end
Khat=Pi+Astf(n,:);%计算k_hat
K=Khat*Tinv; % 计算反馈增益k
当然·该函数也可以用于观测器设计,利用对偶原则
Kob=T2place(A‘,C’,p)‘;