基于深度强化学习的混合动力汽车能量管理策略
1.利用DQN算法控制电池和发动机发电机组的功率分配
2.状态量为需求功率和SOC,控制量为EGS功率
3.奖励函数设置为等效油耗和SOC维持
ID:71100720297983208
未取的名字
基于深度强化学习的混合动力汽车能量管理策略
摘要:随着环境保护和节能意识的增强,混合动力汽车逐渐成为未来汽车发展的趋势。深度强化学习作为一种新兴的技术手段,可以有效地优化混合动力汽车的能量管理策略。本文基于DQN算法,研究了混合动力汽车的能量管理策略,并以需求功率和SOC作为状态量,EGS功率作为控制量,建立了相应的深度强化学习模型。同时,将奖励函数设置为等效油耗和SOC维持,以提高能量管理的性能。实验结果表明,这种基于深度强化学习的混合动力汽车能量管理策略具有较好的控制效果和能量利用率。
-
引言
混合动力汽车作为一种集内燃机和电动机于一体的汽车形式,具有减少尾气排放和提高燃油利用率的优势。在实际行驶过程中,合理的能量管理策略对混合动力汽车的性能和经济性至关重要。传统的能量管理策略主要基于规则和经验,难以实现最优化控制。深度强化学习作为一种基于大数据和强化学习的方法,可以通过机器自主学习和优化,实现混合动力汽车的最优能量管理策略。 -
深度强化学习模型
2.1 DQN算法简介
DQN(Deep Q-Network)算法是深度强化学习中的一种基本算法,其基本思想是通过使用神经网络来估计Q值函数,进而实现最优策略的学习。在混合动力汽车能量管理中,可以利用DQN算法来优化电池和发电机组的功率分配。
2.2 状态量和控制量的选择
在混合动力汽车能量管理中,需求功率和SOC(State of Charge)是两个重要的状态量,可以较为准确地描述车辆的能量需求和电池的剩余电量。而EGS(Electric Generator System)功率是控制量,通过控制EGS功率的分配,可以实现对混合动力汽车的能量供给的控制。
- 基于DQN算法的能量管理策略
3.1 深度强化学习模型建立
根据深度强化学习的基本原理和DQN算法的特点,可以建立混合动力汽车能量管理的深度强化学习模型。模型的输入为需求功率和SOC,输出为EGS功率的控制分配。通过神经网络对Q值函数进行估计和更新,实现能量管理策略的优化。
3.2 奖励函数设置
为了达到优化能量管理策略的目标,需要设计合适的奖励函数。本文将奖励函数设置为等效油耗和SOC维持,即在保证车辆正常行驶的同时,尽量减少能源的消耗和电池的充放电过程,以提高能量利用率。
-
实验结果与分析
为验证基于DQN算法的混合动力汽车能量管理策略的效果,本文进行了一系列的实验。实验结果表明,采用DQN算法的混合动力汽车能量管理策略在满足需求功率的前提下,能够有效地优化能量的分配,提高能源的利用效率和车辆的性能。 -
结论
本文基于深度强化学习的混合动力汽车能量管理策略在需求功率和SOC作为状态量,EGS功率作为控制量的基础上,利用DQN算法进行模型建立和优化。通过合理设置奖励函数,实现最优化控制。实验结果验证了该策略的有效性和优越性。未来需要进一步研究和应用深度强化学习在混合动力汽车领域的潜力和发展方向。
关键词:混合动力汽车;能量管理策略;深度强化学习;DQN算法;需求功率;SOC;EGS功率。
【相关代码 程序地址】: http://nodep.cn/720297983208.html