直线
x
1
≠
x
2
∈
R
n
,
θ
∈
R
x_1 \neq x_2 \in R^n,\theta \in R
x1̸=x2∈Rn,θ∈R
y
=
θ
x
1
+
(
1
−
θ
)
x
2
=
x
2
+
θ
(
x
1
−
x
2
)
y = \theta x_1 + (1-\theta )x_2 = x_2 + \theta (x_1 - x_2)
y=θx1+(1−θ)x2=x2+θ(x1−x2)
线段
x
1
≠
x
2
∈
R
n
,
θ
∈
[
0
,
1
]
x_1 \neq x_2 \in R^n,\theta \in [0,1]
x1̸=x2∈Rn,θ∈[0,1]
y
=
θ
x
1
+
(
1
−
θ
)
x
2
=
x
2
+
θ
(
x
1
−
x
2
)
y = \theta x_1 + (1-\theta )x_2 = x_2 + \theta (x_1 - x_2)
y=θx1+(1−θ)x2=x2+θ(x1−x2)
仿射集(affine sets)
定义:一个集合C是仿射集,若$ \forall x_1,x_2 \in C
,
则
连
接
,则连接
,则连接x_1,x_2$的直线也在集合内。
∀
x
1
,
x
2
∈
C
,
θ
∈
R
\forall x_1,x_2 \in C ,\theta \in R
∀x1,x2∈C,θ∈R
y
=
θ
x
1
+
(
1
−
θ
)
x
2
∈
C
y = \theta x_1 + (1-\theta )x_2 \in C
y=θx1+(1−θ)x2∈C
仿射组合
设
x
1
,
.
.
.
x
k
∈
C
,
θ
1
,
.
.
.
,
θ
k
∈
R
,
θ
1
+
.
.
.
+
θ
k
=
1
x_1,...x_k \in C , \theta _1,...,\theta _k \in R,\theta _1 + ...+\theta _k =1
x1,...xk∈C,θ1,...,θk∈R,θ1+...+θk=1
θ
1
x
1
+
.
.
.
+
θ
k
x
k
\theta _1x_1+...+\theta _kx_k
θ1x1+...+θkxk
如果一个集合C是仿射集,则它的任意仿射组合都属于C。
跟C相关的子空间
V = { x − x 0 ∣ x ∈ C } , ∀ x 0 V = \left \{ x - x_0 | x \in C\right \},\forall x_0 V={x−x0∣x∈C},∀x0
∀ x 1 , x 2 ∈ V , α , β ∈ R ⇒ α x 1 + β x 2 ∈ V \forall x_1,x_2 \in V, \alpha ,\beta \in R \Rightarrow \alpha x_1 + \beta x_2 \in V ∀x1,x2∈V,α,β∈R⇒αx1+βx2∈V
(仿射集要求 α + β = 1 \alpha + \beta = 1 α+β=1,跟C相关的子空间V: α ∈ R , β ∈ R \alpha \in R, \beta \in R α∈R,β∈R)
仿射包
aff C = { θ 1 x 1 + . . . θ k x k ∣ ∀ x 1 , . . . , x k ∈ C , ∀ θ 1 + . . . + θ k = 1 } C = \left \{ \theta _1 x_1 + ... \theta _kx_k | \forall x_1,...,x_k \in C, \forall \theta _1+...+ \theta _k = 1 \right \} C={θ1x1+...θkxk∣∀x1,...,xk∈C,∀θ1+...+θk=1}
(即对任意集合C,构造尽可能小的仿射集)
例:
线性方程组的解集是仿射集