凸优化笔记3

直线

x 1 ≠ x 2 ∈ R n , θ ∈ R x_1 \neq x_2 \in R^n,\theta \in R x1̸=x2Rn,θR
y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) y = \theta x_1 + (1-\theta )x_2 = x_2 + \theta (x_1 - x_2) y=θx1+(1θ)x2=x2+θ(x1x2)

线段

x 1 ≠ x 2 ∈ R n , θ ∈ [ 0 , 1 ] x_1 \neq x_2 \in R^n,\theta \in [0,1] x1̸=x2Rn,θ[0,1]
y = θ x 1 + ( 1 − θ ) x 2 = x 2 + θ ( x 1 − x 2 ) y = \theta x_1 + (1-\theta )x_2 = x_2 + \theta (x_1 - x_2) y=θx1+(1θ)x2=x2+θ(x1x2)

仿射集(affine sets)

定义:一个集合C是仿射集,若$ \forall x_1,x_2 \in C , 则 连 接 ,则连接 x_1,x_2$的直线也在集合内。
∀ x 1 , x 2 ∈ C , θ ∈ R \forall x_1,x_2 \in C ,\theta \in R x1,x2C,θR
y = θ x 1 + ( 1 − θ ) x 2 ∈ C y = \theta x_1 + (1-\theta )x_2 \in C y=θx1+(1θ)x2C

仿射组合

x 1 , . . . x k ∈ C , θ 1 , . . . , θ k ∈ R , θ 1 + . . . + θ k = 1 x_1,...x_k \in C , \theta _1,...,\theta _k \in R,\theta _1 + ...+\theta _k =1 x1,...xkC,θ1,...,θkR,θ1+...+θk=1
θ 1 x 1 + . . . + θ k x k \theta _1x_1+...+\theta _kx_k θ1x1+...+θkxk

如果一个集合C是仿射集,则它的任意仿射组合都属于C。

跟C相关的子空间

V = { x − x 0 ∣ x ∈ C } , ∀ x 0 V = \left \{ x - x_0 | x \in C\right \},\forall x_0 V={xx0xC},x0

∀ x 1 , x 2 ∈ V , α , β ∈ R ⇒ α x 1 + β x 2 ∈ V \forall x_1,x_2 \in V, \alpha ,\beta \in R \Rightarrow \alpha x_1 + \beta x_2 \in V x1,x2V,α,βRαx1+βx2V

(仿射集要求 α + β = 1 \alpha + \beta = 1 α+β=1,跟C相关的子空间V: α ∈ R , β ∈ R \alpha \in R, \beta \in R αR,βR)

仿射包

aff C = { θ 1 x 1 + . . . θ k x k ∣ ∀ x 1 , . . . , x k ∈ C , ∀ θ 1 + . . . + θ k = 1 } C = \left \{ \theta _1 x_1 + ... \theta _kx_k | \forall x_1,...,x_k \in C, \forall \theta _1+...+ \theta _k = 1 \right \} C={θ1x1+...θkxkx1,...,xkC,θ1+...+θk=1}

(即对任意集合C,构造尽可能小的仿射集)

例:

线性方程组的解集是仿射集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值