凸优化读书笔记01(仿射集合、仿射组合,仿射包)

摘要:说到凸优化,免不了涉及到一个名词:凸集。顾名思义,凸集就是一个凸的集合。那么,问题来了,什么样的集合能被称为是凸的呢?在解答这个疑问之前,我们先从凸集里一个比较特殊的例子——仿射集讲起。当你理解了什么是仿射集的时候,你其实离知道什么是凸集已经不远了。

仿射集

基本概念

1. 仿射集合

定义:如果通过集合 C \subseteq R^n 中任意两个不同点的直线仍在集合 C 中,那么称集合C是仿射的。

数学表达:\forall x_1,x_2\in C, \theta \in R, 有 \theta x_1+(1-\theta)x_2 \in C.

【注:为便于指代,将 \theta 记为 \theta_11-\theta 记为 \theta_2,即有 \theta_1 + \theta_2 = 1

直观理解:

图1 通过 x_1 和 x_2 的直线可以参数化描述 \theta x_1+(1-\theta)x_2,其中 \theta 在 \mathbb{R} 上变化,x_1 和 x_2 之间的线段对应处于0和1之间的 \theta

【通俗理解】打个比方,一条直线是仿射集合,因为任意两点连成的直线所有点仍在这条直线上。但是,一条线段就不是仿射集合,原因是在任意两点连成的直线上,有些点并不在线段上,不满足仿射集合的条件。将上述概念扩展到二维来说,整个二维空间才算仿射集合,局部的二维空间不算是仿射集合。

2. 仿射组合

原概念:仿射集合C包含了C中任意两点的系数 \theta_1,\theta_2 之和为1的线性组合。

定义:若 \theta_1+...+\theta_k=1,我们称具有 \theta_1x_1+...+\theta_kx_k=1 形式的点为 x_1,...,x_k 的仿射组合。

归纳:一个仿射集合包含其中任意点的仿射组合,即如果集合 C是仿射集合,那么对于x_1,...,x_k \in C,且 \theta_1 + .. + \theta_k = 1,那么 \theta_1 x_1 + ... + \theta_k x_k 仍然在集合 C 中。

【通俗理解】将仿射集合的原概念拓展到多个点的情况而已。

3. 仿射包

定义:集合 C \subseteq R^n里所有点的所有仿射组合组成的集合称为C的仿射包,记为aff C。仿射包是包含集合C的最小仿射集合。

数学表达:  \mathbf{aff} C = \begin{Bmatrix} \theta_1x_1+...+\theta_kx_k|x_1,..,x_k \in C, \theta_1+...+\theta_k=1 \end{Bmatrix}

【通俗理解】假设集合C里有k个点,这k个点可以按照仿射组合的概念任意搭配,仿射包能够容纳给出的所有搭配。

参考文献

[美]S. Boyd, L. Vandenberghe. 凸优化[M]. 王书宁, 许鋆, 黄晓霖. 北京: 清华大学出版社, 2013.

  • 8
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值