今天我们来聊聊ANP/A2A/MCP三种协议框架及其智能体生态蓝图,Google-A2A协议(Agent-to-Agent协议)、Anthropic-MCP协议(模型上下文协议) 、比特智元科技-ANP协议(Agent网络协议)。
- https://github.com/google/A2A
- https://agent-network-protocol.com/zh
- https://github.com/modelcontextprotocol
之前我们有系列文章,重点深入了解过MCP协议,以及如何构建MCP服务器和MCP客户端开发集成大模型能力,有兴趣的同学可跳转阅读。
协议矩阵
ANP协议(Agent Network Protocol)
ANP(Agent Network Protocol,智能体网络协议)是一种专为分布式智能体设计的开源通信协议,旨在为智能体之间的连接、通信和协作提供标准化框架。ANP的设计以智能体为中心,通过去中心化的身份认证和端到端加密通信,确保数据安全和隐私保护。其目标是成为智能体互联网时代的“HTTP”,为数十亿智能体构建一个开放、安全、高效的协作网络,从而推动未来Agentic Web的发展。
- 核心定位:构建去中心化智能体网络,强调智能体间的平等协作与动态协议协商。通过元协议层实现智能体自组织通信框架,支持跨平台身份互认(基于DID技术)和语义化数据交互。
- 技术特性:
- 元协议层:基于自然语言动态协商生成通信协议,支持自主协商合作,实现自动组织网络,结合沙盒运行保障安全。
- 身份与加密层:采用W3C DID标准,实现去中心化身份认证和端到端加密通信。支持基于 HTTP 的多DID策略保护隐私。
- 应用层:通过语义网技术(如JSON-LD)实现数据语义化,智能体能力描述和高效协议管理,提升AI理解能力。
ANP身份认证整体流程
MCP协议(Model Context Protocol)
MCP(Model Context Protocol,模型上下文协议)由Anthropic于2024年11月推出,是一套开放协议标准,旨在规范AI模型与外部数据源、工具之间的交互方式。它通过标准化接口,实现AI模型与外部资源(如数据库、API、文件系统等)的无缝集成。MCP的设计以模型为中心,将互联网视为上下文和工具的来源,适合当前AI模型(尤其是大型语言模型)访问互联网资源的需求。可以让AI模型像使用USB设备一样方便地调用外部工具,因此可以被视为AI系统的“USB接口”。
- 核心定位:作为AI模型与外部工具、数据源的“标准化接口”,解决工具调用碎片化问题,降低LLM接入外部资源的技术门槛。
- 技术特性:
- 架构模式:客户端(MCP Client)-服务器(MCP Server)架构,客户端调用工具,服务器封装API或数据库接口。
- 协议兼容性:支持JSON-RPC和OAuth认证,适配企业级安全需求。
- 应用场景:典型用例包括代码生成、数据库查询、网页爬取等工具化任务。
A2A协议(Agent-to-Agent Protocol)
A2A(Agent2Agent,智能体对智能体协议)是一种开放协议,专注于智能体之间的交互与协作。它允许不同来源、不同技术的智能体(如LangChain、CrewAI)相互沟通,安全地交换信息,并协同执行复杂任务。A2A的核心目标是打破智能体间的隔离状态,提升智能体的跨平台能力。该协议由Google于2025年4月9日推出,旨在让不同框架和供应商的AI Agent能够相互通信和协作。A2A得到了Google以及超过50家技术合作伙伴的支持,包括Atlassian、Salesforce和SAP,其目标是解决企业级AI Agent的互操作性的问题。
- 核心定位:定义智能体间协作规则,解决跨生态任务分配、状态同步及异构系统互操作性问题,构建“智能体自由贸易区”。
- 技术特性:
- 任务管理:基于SSE和JSON-RPC实现任务生命周期管理(提交、执行、完成、失败),支持长时异步任务与实时状态更新。
- 能力发现:通过AgentCard描述智能体能力(如支持的方法、输入输出格式),实现动态匹配。
- 多模态支持:原生整合音频、视频流等非结构化数据交互。
协议对比与互补性分析
互补关系:
- 纵向整合:MCP连接工具层,A2A协调协作层,ANP构建网络层,形成从工具调用到群体协作的完整链路。
- 横向扩展:A2A可调用ANP的DID身份服务增强安全性,同时通过MCP接入外部工具资源,实现“能力共享”。
协同应用模式设计
分层协作架构
- 工具层(MCP):通过MCP Server封装数据库、API等资源,提供标准化接口。
- 协作层(A2A):定义任务分解与分配逻辑,如将客户服务请求拆分为数据查询(MCP)与人工审核(A2A消息传递)。
- 网络层(ANP):处理跨域身份认证与协议动态协商,例如医疗场景中不同机构的隐私数据交换。
典型协同场景
- 企业工作流自动化:
- MCP:连接ERP、CRM系统获取数据。
- A2A:协调招聘Agent(筛选简历)与面试安排Agent(调度会议)。
- ANP:通过DID验证候选人身份,动态协商数据加密协议。
- 智能城市交通优化:
- MCP:接入交通摄像头数据与天气API。
- A2A:协调路况预测Agent与信号灯控制Agent。
- ANP:跨部门数据共享时实现去中心化权限管理。
技术融合路径
- 协议互操作:在A2A的Task消息中嵌入ANP协议协商字段,支持动态切换通信模式。
- 统一身份体系:使用ANP的DID作为A2A和MCP的底层身份标识,实现跨协议单点登录。
挑战与未来趋势
- 挑战:协议兼容性(如ANP与A2A的会话状态管理差异)、性能损耗(多层协议栈叠加)、安全边界(跨协议数据流加密一致性)。
- 趋势:
- 嵌套架构:A2A代理可共享MCP连接池,减少重复资源调用。
- 动态资源发现:ANP元协议层扩展为A2A的AgentCard元数据来源,实现能力自动匹配。
应用实例参考
医疗诊断协同: MCP接入电子病历系统,A2A协调影像分析Agent与病理诊断Agent,ANP实现跨院数据合规共享。
金融风控流程: MCP调用市场数据API,A2A分配风险评估与合规审查任务,ANP通过多DID策略隔离敏感操作。
总结
AI联邦时代将通过分层整合ANP、MCP与A2A,构建兼具灵活性、安全性与效率的智能体生态系统,推动AI从单点工具向群体协作进化。