论文地址:https://arxiv.org/abs/2107.09428
摘要
非自回归 (NAR) 模型在语音处理中越来越受到关注。 凭借最新的基于注意力的自动语音识别 (ASR) 结构,与自回归 (AR) 模型相比,NAR 可以在仅精度略有下降的情况下实现有前景的实时因子 (RTF) 提升。 然而,识别推理需要等待完整语音话语的完成,这限制了其在低延迟场景中的应用。 为了解决这个问题,我们提出了一种新颖的端到端流式 NAR 语音识别系统,该系统结合了分块注意力和带有掩码预测 (Mask-CTC) NAR 的连接主义时间分类。 在推理过程中,输入音频被分成小的块,然后以分块流式的方式进行处理。 为了解决每个块输