【ASR】基于分块非自回归模型的流式端到端语音识别

论文地址https://arxiv.org/abs/2107.09428

摘要

非自回归 (NAR) 模型在语音处理中越来越受到关注。 凭借最新的基于注意力的自动语音识别 (ASR) 结构,与自回归 (AR) 模型相比,NAR 可以在仅精度略有下降的情况下实现有前景的实时因子 (RTF) 提升。 然而,识别推理需要等待完整语音话语的完成,这限制了其在低延迟场景中的应用。 为了解决这个问题,我们提出了一种新颖的端到端流式 NAR 语音识别系统,该系统结合了分块注意力和带有掩码预测 (Mask-CTC) NAR 的连接主义时间分类。 在推理过程中,输入音频被分成小的块,然后以分块流式的方式进行处理。 为了解决每个块输

<think>好的,我现在需要帮用户找到关于中文语音识别模型的开源资料、实现方法或教程。用户提到了Kaldi和Whisper这两个模型,我需要结合他们提供的引用内容来组织回答。 首先,用户提供的引用[1]详细介绍了Kaldi在中文语音识别中的应用,包括特征提取和模型训练,还有相关的博客链接,这可能是一个重要的资源。引用[2]则讨论了Whisper模型的使用,特别是如何用transformers库进行推理,以及处理长音频的方法。这两个开源工具都是用户可能需要的。 接下来,我需要整理出这两个工具的具体实现步骤,确保步骤清晰,用户能一步步操作。对于Kaldi,可能需要说明如何安装、数据准备、特征提取、模型训练和解码。对于Whisper,则要介绍安装模型库、加载模型、处理音频和推理。同时,用户可能遇到的问题也需要提及,比如Kaldi的复杂配置和Whisper的长音频处理。 然后,生成相关问题时要考虑用户可能的后续疑问,比如性能优化、其他开源模型、数据预处理等。这些问题应该覆盖用户可能进一步探索的方向。 最后,要确保回答符合系统级指令,使用正确的中文和LaTeX格式,引用标识正确添加。检查是否有遗漏的关键点,比如部署方式或常见问题的解决方法,确保信息准确可靠。</think>### 中文语音识别模型开源实现与教程 #### 一、主流开源工具与模型 1. **Kaldi语音识别框架** Kaldi是当前最流行的开源语音识别工具,支持中文语音识别任务。其特点包括: - 自带MFCC/ivector/xvector等特征提取模块 - 提供GMM-HMM、DNN-HMM等经典模型实现 - 支持GPU加速训练 - 通过SHELL脚本实现流程控制[^1] 典型中文实现流程: ```bash # 数据准备 local/aidatatang_asr_download.sh /path/to/data local/aidatatang_asr_prep.sh data/aidatatang data/train # 特征提取 steps/make_mfcc.sh --nj 10 data/train steps/compute_cmvn_stats.sh data/train # 模型训练 steps/train_mono.sh --nj 10 --cmd run.pl data/train lang/base exp/mono ``` 2. **Whisper开源模型** OpenAI开源的端到端语音识别模型,支持多语言(含中文): - 提供tiny/small/base/large等不同规模的预训练模型 - 支持微调和长语音处理[^2] 推理示例代码: ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") model = WhisperForConditionalGeneration.from_pretrained("models/whisper-tiny-finetune") inputs = processor(audio_array, return_tensors="pt", sampling_rate=16000) predicted_ids = model.generate(inputs.input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) ``` #### 二、关键实现步骤 1. **数据准备阶段** - 中文语音数据集:AISHELL、Aidatatang等 - 文本标注格式转换:需转换为拼音或汉字序列 - 数据增强:添加噪声、速度扰动等 2. **特征工程** - 提取梅尔频率倒谱系数($MFCC$) - 计算$\Delta$和$\Delta\Delta$特征 - 标准化处理:$x' = \frac{x - \mu}{\sigma}$ 3. **模型训练** ```math \text{声学模型目标函数:} \mathcal{L} = -\sum_{t=1}^T \log P(s_t|o_t) ``` - Kaldi传统方法:GMM-HMM → nnet3链式模型 - 端到端方法:Transformer架构(如Whisper) #### 三、部署与优化 1. **Web服务部署** 使用CTranslate2优化Whisper模型: ```python from faster_whisper import WhisperModel model = WhisperModel("models/whisper-tiny-finetune", device="cuda") segments, info = model.transcribe("dataset/test.wav", beam_size=5) ``` 2. **性能优化技巧** - 量化模型:FP32 → INT8 - 流式识别:分块处理长语音 - 语言模型融合:n-gram语言模型增强
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木亦汐丫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值