【大模型系列篇】如何解决DeepSeek-R1结构化输出问题,使用PydanticAl和DeepSeek构建结构化Agent

今日号外:🔥🔥🔥 DeepSeek开源周:炸场!DeepSeek开源FlashMLA,提升GPU效率

下面我们开始今天的主题,deepseek官方明确表示deepseek-r1目前不支持json输出/function call,可点击跳转至deepseek api查看。从deepseek-r1论文《DeepSeek-R1如何通过强化学习有效提升大型语言模型的推理能力》末尾对未来工作的展望中,我们知道deepseek团队将在deepseek-r1的通用能力上继续探索加强,包括函数调用、多轮对话、复杂角色扮演和json输出等任务上的能力。

如何解决DeepSeek-R1结构化输出问题,本文将使用PydanticAl和DeepSeek构建结构化Agent。

安装依赖

pip -q install pydantic-ai
pip -q install nest_asyncio
pip -q install devtools
pip -q install tavily-python
# Jupyter环境,启用嵌套的异步事件循环
import nest_asyncio
nest_asyncio.apply()

设置搜索Tavily 

from tavily import TavilyClient, AsyncTavilyclient 
#设置 Tavily客户端
tavily_client = AsyncTavilyClient(api_key=os.environ["TAVILY_API_KEY"])
#简单搜索
response=await tavily_client.search("介绍一下什么是deepseek R1?", max_results=3)
print(response['results'])

设置DeepSeek模型

from pydantic_ai import Agent
from pydantic_ai.models.openai import OpenAIModel

# DeepSeekV3
deepseek_chat_model = OpenAIModel(
    'deepseek-chat',
    base_url='https://api.deepseek.com',
    api_key=os.environ["DEEPSEEK_API_KEY"],
    )
    
# DeepSeekR1
deepseek_reasoner_model = OpenAIModel(
    'deepseek-reasoner',
    base_url='https://api.deepseek.com',
    api_key=os.environ["DEEPSEEK_API_KEY"],
    )
DeepSeekV3模型 

首先我们来尝试使用DeepSeekV3模型来完成function call和json格式化输出问题。

from _future import annotations as annotations

import asyncio
import os
from dataclasses import dataclass
from typing import Any

from devtools import debug
from httpx import AsyncClient
import datetime
from pydantic_ai import Agent, ModelRetry, RunContext
from pydantic import BaseModel, Field

@dataclass
class SearchDataclass:
    max_results: int
    todays_date:str
    
@dataclass
class ResearchDependencies:
    todays_date: str
    
class ResearchResult(BaseModel):
    research_title:str=Field(description='这是一个顶级Markdown标题,涵盖查询和答案的主题,并以#作为前缀')
    research_main:str=Field(description='这是一个主要部分,提供查询和研究的答案')
    research_bullets:str=Field(description='这是一组要点,用于总结查询的答案')

## 创建代理
search_agent = Agent(deepseek_chat_model,
        deps_type=ResearchDependencies,
        result_type=ResearchResult,
        system_prompt="你是一个乐于助人的研究助手,并且是研究方面的专家。
                       如果你收到一个问题,你需要写出强有力的关键词来进行总共3-5次搜索
                       (每次都有一个query_number),然后结合结果")
                       
@search_agent.tool #Tavily
async def get_search(search_data:RunContext[SearchDataclass],query: str,query_number: int) -> dict[str,Any]
    """获取关键词查询的搜索结果。
    Args:
    query:要搜索的关键词。
    """
    print(f"Search query {query_number}:{query}")
    max_results = search_data.deps.max_results
    results = await tavily_client.get_search_context(query=query, max_results=max_results)
    return results

## 设置依赖项
# 获取当前日期
current_date=datetime.date.today()
# 将日期转换为字符串
date_string = current_date.strftime("%Y-%m-%d")
deps = SearchDataclass(max_results=3, todays_date=date_string)

result = await search_agent.run('你能给我用中文详细分析一下 DeepSeekR1模型吗', deps=deps)

print(result.data.research_title)
print(result.data.research_main)
print(result.data.research_bullets)                     
DeepSeek-R1模型
class LifeMeaningStructuredResult(BaseModel):
    life_meaning_title:str = Field(description='这是一个顶级的Markdown标题,涵盖查询的主题和答案,以#开头')
    life_meaning_main: str = Field(description='这是提供查询和问题答案的主要部分')
    life_meaning_bullets: str= Field(description='这是一组总结查询答案的要点')
    
##创建代理
reasoner_agent = Agent(deepseek_reasoner_model,
                       deps_type=ResearchDependencies,
                       result_type=LifeMeaningStructuredResult,
                       system_prompt='你是一个有帮助且智慧的推理助手,你擅长思考 
                       如果你被问到一个问题,你会仔细思考,然后回复一个标题、你的思考过程、
                       一组要点总结和一个最终答案')

result = await reasoner_agent.run('什么是人工智能?')

和官方文档描述一致,不支持Function Calling。

方法一、设置第二个LLM帮忙解析并输出

from pydantic_ai import Agent

class LifeMeaningStructuredResult(BaseModel):
    title:str=Field(description='这是一个顶级的Markdown标题,涵盖查询的主题和答案,以#开头')
    answer:str=Field(description='这是提供查询和问题答案的主要部分'
    bullets:str=Field(description='这是一组总结查询答案的要点')
    thinking:str=Field(description='这是一个字符串,涵盖答案背后的思考过程')
 
##创建代理
reasoner_agent = Agent(deepseek_reasoner_model,
                       # deps_type=ResearchDependencies,
                       # result_type=LifeMeaningStructuredResult,
                       system_prompt='你是一个有帮助且智慧的推理助手,你擅长思考 
                       如果你被问到一个问题,你会仔细思考,然后回复一个标题、你的思考过程、
                       一组要点总结和一个最终答案')

result = await reasoner_agent.run('什么是人工智能')
  
  
from pydantic_ai.models.openai import OpenAIModel
ollama_model = OpenAIModel(model_name='qwen2.5:32b', base_url='http://localhost:11434/v1') 
   
formatting_agent = Agent(ollama_model,
                        result_type=LifeMeaningStructuredResult,
                        system_prompt='你是一个有帮助的格式化助手,你从不发表自己的意见
                        你只是接收给定的输入,并将其转换为结构化结果以返回,'
                        )

structured_results = await formatting_agent.run(result.data)
print(structured_results.data.title)
print(structured_results.data.answer)
print(structured_results.data.bullets)
print(structured_results.data.thinking)

方法二、把推理模型当成一个tool

ORCHESTRATOR_PROMPT="""你是一个协调系统,在专用工具之间间进行协调以产生全面的响应。请遵循以下确切顺序,不要跳过:
一旦你有了搜索信息,总是返回到推理模型进行综合

1.关键词生成
  输入:用户查询
  工具:推理引擎
  操作:生成3-5个搜索关键词/短语
  输出格式:{关键词,查询ID}列表

2.搜索执行
  输入:来自步骤1的关键词
  工具:搜索工具
  操作:使用每个关键词执行并行搜索
  输出格式:{查询ID,搜索结果[]}列表

3.综合
  输入:
  - 原始用户查询
  - 所有搜索结果
  工具:推理引擎
  操作:分析和综合信息,如果你需要更多信息,请要求进行更多搜索
  输出格式:结构化报告,包含:
  - 主要发现
  - 支持证据
  - 可信度

4.响应格式化
  输入:综合报告
  操作:格式化为用户友好的响应,包含:
  - 清晰的章节
  - 引用
  - 相关指标
  输出:最终格式化的响应

每个步骤都需要验证:
-验证工具输出是否与预期格式匹配
-记录任何失败的步骤以便重试
-保持信息来源的可追溯性
"""
@dataclass
class TaskData:
    task: str

@dataclass
class SearchDataclass:
    max_results: int

class ReportStructuredResult(BaseModel):
    title:str=Field(description='这是一个顶级的Markdoown标题,涵盖查询的主题和答案,以#开头')
    answer:str=Field(description='这是提供查询和问题答案的主要部分')
    bullets:str=Field(description='这是一组总结查询答案的要点')
    thinking:str=Field(description='这是一个字符串,涵盖答案背后的思考过程')
    
from pydantic_ai.models.openai import OpenAIModel
ollama_model = OpenAIModel(model_name='qwen2.5:32b', base_url='http://localhost:11434/v1') 

orchestrator_agent = Agent(ollama_model,
    result_type=ReportStructuredResult,
    system_prompt=ORCHESTRATOR_PROMPT
    )
    
deps = SearchDataclass(max_results=3)

SYSTEM PROMPT="""你是一个有帮助且智慧的推理助手,你擅长思考
如果你被问到一个问题,你会仔细思考,然后回复一个标题、
一组要点总结和一个最终答案"""


@orchestrator_agent.tool_plain
async def get_reasoning_answers(task: str) -> dict[str, Any]
    """获取任何任务的强大推理答案。
    Args:
    task:用于推理的任务
    """
    client = OpenAI(api_key=os.environ["DEEPSEEK_API_KEY"] 
            base_url="https://api.deepseek.com")

    messages = [{"role": "system", "content": SYSTEM PROMPT},
                {"role": "user", "content": task}]
    
    response = client.chat.completions.create(model="deepseek-reasoner", messages=messages)

    reasoning_content = response.choices[0].message.reasoning_content
    content = response.choices[0].message.content
    
    formatted_response = "<thinking>" + reasoning_content + "</thinking>" + "\n\n" + content
    return formatted_response


@orchestrator_agent.tool #Tavily
async def get_search(search_data:RunContext[SearchDataclass],query: str, query_number: int) -> dict[str, Any]:
    """获取关键词查询的搜索结果。
    Args:
    query:要搜索的关键词。
    """
    print(f"Search query {query_number}: {query}")
    max_results = search_data.deps.max_results
    results = await tavily_client.get_search_context(query=query, max_results=max_results)
    return results
    
structured_results = await orchestrator_agent.run(
                     "请用P中文为我创建一份关于DeepSeekR1-Zero模型中使用的GRPO、RL的的报告", 
                     deps=deps)
                     
print(structured_results.data.title)
print(structured_results.data.answer)
print(structured_results.data.bullets)
print(structured_results.data.thinking)

### 构建 DeepSeek-R1 Agent 构建 DeepSeek-R1 Agent 需要考虑其作为高性能代理的设计目标以及所依赖的技术栈。此过程涉及多个方面,包括但不限于模型选择、数据处理机制集成方法。 #### 模型架构设计 DeepSeek-R1-Agent 的核心在于采用先进的预训练语言模型 (LLM),这些模型具备强大的自然语言理解生成能力[^3]。为了确保在各种应用场景中的灵活性与适应性,通常会选择那些已经过大规模语料库训练并证明有效的 LLMs 来支撑该Agent的功能实现。 #### 数据交互流程 对于像 DeepSeek-R1 这样的智能体来说,能够有效地管理利用对话历史非常重要。通过使用类似于 LangGraph 的工具来自动化记录聊天信息,可以使系统更好地理解上下文环境,并据此做出更精准的响应[^2]。 #### 特定功能开发 当涉及到具体任务执行时,如提供基于时间管理建议的回答,则会运用到专门针对此类场景优化过的逻辑结构——即所谓的“增强生成”技术。这种技术允许将复杂的推理过程转化为易于被终端用户接受的形式[^4]。 ```python def generate_advice(question, context): # 增强生成示例函数 reasoning_result = perform_reasoning(context) final_answer = combine_with_question(reasoning_result, question) return final_answer def perform_reasoning(context): # 执行具体的推理操作 pass def combine_with_question(reasoning_result, question): # 将推理结果与原始问题结合生成最终答案 pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值