如何完美解锁DeepSeek-R1的结构化输出能力(基于LangChain)?

DeepSeek-R1这样的推理模型有着强大的深度思考能力,但也有着一些不同于通用模型的特点与用法,比如不支持函数调用,不支持结构化输出,o1甚至不支持系统提示(System Prompt)等。尽管这和它们的使用场景有关,但有时也会带来不便。今天我们就来说说结构化输出这个常见的问题。

  • **理解结构化输出
    **

  • **借助辅助模型实现DeepSeek结构化输出
    **

  • 借助Agent实现DeepSeek结构化输出

  • 其他问题

01

理解结构化输出

【什么是结构化输出】

结构化输出就是大模型在生成响应时,以一种有结构的规范化形式呈现,而不是自由文本。这种结构化的输出通常包括预定义的字段、标签、列表、表格、或者其他形式的组织化数据,而最常见也是最灵活的一种表达形式就是JSON。比如输出一个结构化的用户信息可能如下:

【为什么需要结构化输出】

结构化输出的最大意义在于:提供一种更易于程序处理的标准化数据交换格式,极大地方便应用的后续解析与处理。这些后续处理比如

  • 将提取的信息导入关系型数据库

  • 自动化的填写web表格/表单

  • 对接外部或者企业的API

这种能力对于企业级的应用,特别是在多步骤任务的Agent中,可以极大方便后续步骤的处理,并减少LLM带来的不确定性。举一个例子:

在一个自主学术研究的Agent中,希望借助DeepSeek-R1的深度思考能力,首先生成完善的研究大纲,后续再根据大纲对每一个子主题借助搜索引擎、RAG等获取参考资料,并做进一步研究。

在这个例子中,我们希望DeepSeek输出的大纲如下:

很显然,这样的输出会更方便后续程序的理解与处理。

【结构化输出的常见方式】

对于目前的很多通用模型来说,结构化输出已经不再是一个障碍,你可以通过模型提供的API参数进行强制。比如gpt-4o目前支持几种主要的结构化输出方式:

除了Function Calling(这必然会产生结构化输出)外:

  • **JSON mode:**需要使用提示词进行限定,并在API参数中指定响应格式为json_object,这种方式可以确保输出有效的JSON格式,但具体格式需要借助提示(目前一些模型还只支持这种方式,比如阿里的qwen)。

  • JSON Schema:使用更加便捷,通过API传入定义的JSON Schema或者Pydantic模型即可,无需借助提示词。这种方式可以直接输出指定的对象,无需自解析。比如对于上面的例子,你可以要求模型直接输出以下的Outline对象:

# 数据模型定义  
class Subsection(BaseModel):  
    """子章节"""  
    subsection_title: str = Field(..., description="子章节的标题")  
    description: str = Field(..., description="子章节的详细内容描述")  
  
class Section(BaseModel):  
    """主要章节及其包含的子章节"""  
    section_title: str = Field(..., description="章节标题")  
    description: str = Field(..., description="章节内容概述")  
    subsections: Optional[List[Subsection]] = Field(  
        default=None,  
        description="本章节中的子章节",  
    )  
  
class Outline(BaseModel):  
    """完整大纲"""  
    page_title: str = Field(..., description="报告标题")  
    sections: List[Section] = Field(  
        default_factory=list,  
        description="文章的主要章节",  
    )

当你指定这里的Outline为输出格式时,API将会直接返回你Outline类型的对象,极大的方便了后续处理。

注意这里的结构化输出是在API层的支持,并非简单的通过Prompt进行输出格式的限定。当然,你也可以通过提示词要求deepseek生成json格式的字符串,但存在较大的不确定性(比如内容多了个```json```,或者"这是你要求的json字符串"),从而导致后续解析失败。

那么现在我们需要deepseek来帮助完成Agent的某个步骤,同时希望获得稳定的结构化输出,应该如何处理呢?接下来介绍两种方式。

02

借助辅助模型处理

这种方法融合DeepSeek-R1的深度思考能力与通用模型的结构化输出能力(如GPT-4o):**将R1的推理结果借助一个“辅助”模型进行“格式化”后输出,**概念流程如下:

具体到LangChain框架中,实现这种顺序流的方式又有两种,这里依次介绍。

【Chain链】

Chain是LangChain中最核心的概念。它将多个步骤或组件连接在一起,实现复杂的处理任务。借助LCEL(Langchain表达式语言)可以快速构建这个Chain:

......  
  
# deepseek提示  
system_prompt_deepseek = ChatPromptTemplate.from_template("""  
针对用户提供的主题, 撰写一篇研究报告的大纲。要求全面且具体。我的主题:{topic}  
""")  
  
# 内容格式化提示  
system_prompt_format = ChatPromptTemplate.from_template("""  
你是一个内容格式化专家, 只负责将输入内容转化为结构化输出, 不要做额外思考。我的内容:{draft}  
""")  
  
# deepseek模型  
llm_ollama_deepseek = ChatOllama(model='deepseek-r1:1.5b')  
  
# openai模型:使用with_structured_output强制结构化输出  
llm_openai = ChatOpenAI(model='gpt-4o-mini').with_structured_output(Outline)  
  
# 创建 LangChain 的 chain  
chain = system_prompt_deepseek | llm_ollama_deepseek | system_prompt_format | llm_openai

我们对这个Chain进行测试:

......  
  
    response = await chain.ainvoke({"topic":"deepseek-r1的技术原理与创新分析"})  
    print("\n生成的大纲:")  
    print(response.as_str)

输出如下,我们可以得到一个非常干净的结构化输出的大纲(这里输出的response实际是一个上面定义的Outline对象,这里通过一个简单的as_str进行转化打印):

【LangGraph工作流】

既然是一个流式任务,当然也可以通过LangGraph来实现,构建这样一个简单的Graph即可:

这里核心的state与node定义如下:

...  
class State(TypedDict):  
    """图的状态类型"""  
    topic: str  
    draft: str | None  
    output: Outline | None  
  
def deepseek_node(state: State) -> State:  
      
    """使用deepseek模型处理输入任务"""  
    ollama = ChatOllama(model="deepseek-r1:1.5b")  
    messages = [SystemMessage(content='针对用户提供的主题,撰写一篇研究报告的大纲。要求全面且具体'),  
    HumanMessage(content=state["topic"])]  
    response = ollama.invoke(messages)  
    state["draft"] = response.content  
    return state  
  
def formatter_node(state: State) -> State:  
  
    """使用GPT-4o处理并格式化输出"""  
    llm = ChatOpenAI(model="gpt-4o-mini").with_structured_output(Outline)  
    messages = [SystemMessage(content='你是一个内容格式化专家,只负责将输入内容转化为结构化输出,不要做额外思考'),  
    HumanMessage(content=f'我的内容: {state["draft"]}')]  
    response = llm.invoke(messages)  
    state["output"] = response  
    return state

剩下的工作就是创建Graph并测试,交给读者们自行完成。

以上的两种方法(Chain或者Graph)都可以达到相同的目的,Chain实现相对简洁,适合在普通的应用中使用;而如果你本身就是一个需要使用LangGraph来实现的复杂Agent应用,那么可以参考第二种:增加一个专门的formatter节点即可。

03

借助ReActAgent实现

这种方法的思想是借助Agent的思想,让deepseek的深度思考作为一个Agent可以使用的工具,在这个工具(使用deepseek模型)获得思考结果后,再通过结构化输出的模型进行格式化(使用gpt-4o模型)。概念如下图:

由于这是一个React类型的Agent,因此其更适合在多Agent应用环境中使用,让其与其他Agent通过协作完成更复杂的任务。

【构建Tool】

首先创建一个使用deepseek-r1进行思考的工具,输入是研究主题,输出则是思考结果(自由文本表达的研究大纲)。

@tool  
def deepseek_research(prompt: str) -> str:  
    """  
        对输入的研究任务进行思考,并生成研究大纲的草稿  
        args:  
            prompt(str): 输入的研究任务描述  
        return:  
            result(str): 思考结果  
    """  
    print('start think...')  
    messages = [HumanMessage(content=f'针对用户提供的主题,撰写一篇研究报告的大纲。要求全面且具体。我的主题:{prompt}')]  
    result = llm_ollama_deepseek.invoke(messages)  
    print(result.content)  
    return result.content

**【创建ReAct Agent】
**

借助LangChain的prebuilt函数快速的构建一个ReAct Agent来使用这个Tool。为了让这个Agent必须使用这个Tool,可能需要在提示词上适当调优。参考如下代码:

...  
llm = ChatOpenAI(model='gpt-4o-mini')  
agent = create_react_agent(llm, response_format=Outline, tools=[deepseek_research])  
response = agent.invoke({"messages":[  
    SystemMessage(content="请首先使用工具(deepseek_research)来生成研究大纲草稿,然后对草稿进行格式化输出。请注意把输入主题直接交给工具,不要做思考与加工。以下是我的研究主题。"),  
    HumanMessage(content="deepseek-r1技术原理与创新分析")]})  
last_message = response["structured_response"]  
print(last_message.as_str)

注意这里与上面两种方法的不同之处在于:不直接调用llm的with_structured_output方法,而是在create_react_agent方法中指定response_format参数(本质上一样)。

04

其他问题

以上展示了两种方法来给DeepSeek-R1这样的推理模型“嫁接”上稳定的结构化输出的能力,以帮助在复杂的企业级应用中对接其他流程或任务。

这里还有最后一个问题:如果我的辅助模型不是gpt-4o这样具备便捷的结构化输出接口的模型怎么办(即不支持使用JSON Schema或者Pydantic模型定义输出格式)?方法就是借助JSON mode,以qwen模型为例,通常包括几个步骤:

1. 在API调用时指定JSON mode,比如qwen系列模型中:

response_format={"type": "json_object"}

2. 在提示词中明确要求进行JSON结构化输出,并指定格式。

3. 由于这种方式的API不会直接输出对象,因此你需要对结果字符串做解析:

json_object = json.loads(result)

OK,借助以上介绍的几种方法,现在你可以把DeepSeek更加如鱼得水接入到你的应用中,感受其强大的威力。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
<think>好的,用户问的是DeepSeek-R1满血版和普通版的区别。我需要先确认这两个版本的具体信息。可能涉及硬件配置、性能参数、功能特性或者应用场景的不同。 首先,我应该回想一下之前学过的关于DeepSeek-R1的知识。根据记忆,DeepSeek-R1是深度求索公司开发的智能助手,可能像其他AI模型一样,有不同版本,比如基础版和增强版。满血版可能指的是性能更强的版本,可能在模型规模、响应速度、多轮对话能力支持的功能等方面有提升。 接下来要考虑用户可能的背景。用户可能是普通消费者,想了解哪个版本更适合自己,或者是技术人员,想了解技术差异。用户的问题比较直接,可能需要简洁明了的对比,但也要确保信息准确。 需要确认是否有官方资料提到这两个版本的区别。假设没有公开详细资料,可能需要基于常见的版本差异来推测。比如满血版可能有更大的参数数量,更好的理解能力,更高的响应速度,支持更复杂的任务,或者具备更多的定制化功能。 另外,要注意可能的命名差异,有时候“满血版”可能指解锁了全部功能的版本,而普通版可能在某些方面有限制,比如处理速度、同时处理的请求数,或者API调用的限制。 还要考虑价格和可用性,满血版可能面向企业用户或需要更高性能的场景,而普通版适合一般用户。不过如果这是内部测试版本或未公开的,可能需要说明信息不足,建议查阅官方渠道。 需要确保回答准确,如果有不确定的地方,应该建议用户参考官方发布的信息,避免提供错误的内容。同时保持回答结构清晰,分点列出区别,方便用户快速理解。 最后,检查是否有遗漏的关键点,比如是否支持多语言、特定领域的优化、隐私保护措施等,这些也可能是版本间的差异。但如果没有明确的信息,可能需要避免猜测,保持回答基于已知信息。 总结,应该分点列出可能的区别,包括性能、功能、应用场景、访问限制等方面,同时提醒用户以官方信息为准,确保回答的可靠性和实用性。</think>DeepSeek-R1是深度求索公司(DeepSeek)开发的智能助手,其不同版本通常会在性能、功能或适用场景上有所区别。关于**DeepSeek-R1满血版**与**DeepSeek-R1**的区别,以下是一些可能的差异方向(基于常见的版本迭代逻辑推测,具体以官方信息为准): --- ### 1. **性能与模型规模** - **满血版**:可能采用更大规模的模型参数,拥有更强的语义理解、推理能力和生成质量,尤其在复杂任务(如长文本生成、多轮对话、逻辑推理)中表现更优。 - **标准版**:可能在模型规模或计算资源上有所精简,适合轻量级任务或对响应速度要求较高的场景。 --- ### 2. **功能特性** - **满血版**:可能支持更多高级功能,例如: - 更长的上下文记忆(处理更长对话历史)。 - 支持插件或外部工具调用(如联网搜索、数据分析等)。 - 多模态能力(图文混合处理)。 - **标准版**:功能相对基础,专注于通用对话和常见任务。 --- ### 3. **响应速度与资源占用** - **满血版**:可能因模型复杂度更高,对算力需求较大,响应速度略慢,但结果更精准。 - **标准版**:可能优化了推理效率,响应更快,适合实时交互场景。 --- ### 4. **应用场景** - **满血版**:面向企业级用户或复杂需求,如专业咨询、代码开发、数据分析等。 - **标准版**:适合个人用户的日常问答、简单创作等场景。 --- ### 5. **访问权限与成本** - **满血版**:可能需要通过API付费订阅或专属授权访问,成本较高。 - **标准版**:可能免费开放或提供基础限次API,成本更低。 --- ### 注意事项 - 具体差异需以**官方发布信息**为准,建议通过DeepSeek官网或技术文档获取最新版本说明。 - 版本命名可能因公司策略调整而变化(例如“满血版”可能指完全体模型,而标准版是轻量化部署)。 如果需要进一步确认细节,可关注深度求索公司的官方公告或联系其技术支持
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值