bzoj 4316: 小C的独立集(仙人掌树形DP)

 

4316: 小C的独立集

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 682  Solved: 380
[Submit][Status][Discuss]

Description

图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨。

这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多。

小D虽然图论很弱,但是也知道无向图最大独立集是npc,但是小C很仁慈的给了一个很有特点的图: 图中任何一条边属于且仅属于一个简单环,图中没有重边和自环。小C说这样就会比较水了。

小D觉得这个题目很有趣,就交给你了,相信你一定可以解出来的。

 

Input

第一行,两个数n, m,表示图的点数和边数。

第二~m+1行,每行两个数x,y,表示x与y之间有一条无向边。

 

Output

输出这个图的最大独立集。

 

Sample Input

5 6
1 2
2 3
3 1
3 4
4 5
3 5

Sample Output

2

 

dp[u][0]表示只考虑u的子树,u点不选的方案个数

dp[u][1]表示只考虑u的子树,选了u点的方案个数

你就正常DP,然后每次DP到所有环中离根最近的那个点时,单独拉出来算一下就可以了

 

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<map>
#include<string>
#include<math.h>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
#define LL long long
#define mod 1000000007
vector<int> G[50005];
int t, dp[50005][2], low[50005], Time[50005], fa[50005];
void Gao(int u, int v)
{
	int i, s1, s0, t1, t0;
	s1 = s0 = 0;
	for(i=v;i!=u;i=fa[i])
	{
		t0 = s0+dp[i][0], t1 = s1+dp[i][1];
		s0 = max(t1, t0), s1 = t0;
	}
	dp[u][0] += s0;
	s1 = -1000000, s0 = 0;
	for(i=v;i!=u;i=fa[i])
	{
		t0 = s0+dp[i][0], t1 = s1+dp[i][1];
		s0 = max(t1, t0), s1 = t0;
	}
	dp[u][1] += s1;
}
void Trajan(int u, int p)
{
	int i, v;
	fa[u] = p;
	Time[u] = low[u] = ++t;
	dp[u][1] = 1, dp[u][0] = 0;
	for(i=0;i<G[u].size();i++)
	{
		v = G[u][i];
		if(v==p)
			continue;
		if(Time[v]==0)
		{
			Trajan(v, u);
			low[u] = min(low[v], low[u]);
		}
		else
			low[u] = min(low[u], Time[v]);
		if(low[v]>Time[u])
		{
			dp[u][0] += max(dp[v][0], dp[v][1]);
			dp[u][1] += dp[v][0];
		}
	}
	for(i=0;i<G[u].size();i++)
	{
		v = G[u][i];
		if(fa[v]!=u && Time[v]>Time[u])
			Gao(u, v);
	}
}
int main(void)
{
	int n, m, i, x, y;
	scanf("%d%d", &n, &m);
	for(i=1;i<=m;i++)
	{
		scanf("%d%d", &x, &y);
		G[x].push_back(y);
		G[y].push_back(x);
	}
	Trajan(1, 0);
	printf("%d\n", max(dp[1][0], dp[1][1]));
	return 0;
}

 

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值