题意:
给你一个n*m的地图,"#"是障碍,"."是路,不能走出边界,问从(1,1)到(n,m)选出两条不相交最短路径的方案数是多少(其中起点和终点相同不算相交)
思路:
知道Lindström–Gessel–Viennot lemma定理就是水题了
对于一个无边权有向无环图,给出n个起点和对应的n个终点,这n条不相交路径的方案数为
行列式的值
其中e(a, b)为图上a点到b点的方案个数
对于这题
行列式大小为2
且a1 = (1, 2);a2 = (2, 1);b1 = (n-1, m);b2 = (n, m-1);
直接套就可以了
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<map>
#include<string>
#include<math.h>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
#define LL long long
#define mod 1000000007
char str[3005][3005];
int dp1[3005][3005], dp2[3005][3005];
int main(void)
{
int n, m, i, j;
scanf("%d%d", &n, &m);
for(i=1;i<=n;i++)
scanf("%s", str[i]+1);
if(str[1][2]=='#' || str[2][1]=='#')
printf("0\n");
else
{
dp1[1][2] = dp2[2][1] = 1;
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(i+j<=3 || str[i][j]!='.')
continue;
dp1[i][j] = (dp1[i][j-1]+dp1[i-1][j])%mod;
dp2[i][j] = (dp2[i][j-1]+dp2[i-1][j])%mod;
}
}
//printf("%d %d %d %d\n", dp1[n-1][m], dp1[n][m-1], dp2[n-1][m], dp2[n][m-1]);
printf("%lld\n", (((LL)dp1[n-1][m]*dp2[n][m-1]-(LL)dp1[n][m-1]*dp2[n-1][m])%mod+mod)%mod);
}
return 0;
}