RAG与微调大模型构建知识问答系统的比较

在这里插入图片描述

RAG与微调大模型在构建知识问答系统时各有优缺点

RAG(Retrieval-Augmented Generation)的优点

  • 知识更新成本低:RAG技术无需重新训练整个模型,只需更新知识库即可实现知识的更新和扩展,降低了知识更新的成本。
  • 提高答案准确性:通过检索相关知识,RAG能够提供更准确、更相关的答案,减少模型的幻觉现象。
  • 增强可解释性:由于RAG生成的文本基于可检索的知识,因此用户可以验证答案的准确性,并增加对模型输出的信任。
  • 数据更新灵活:RAG通过更新外部知识库来引入新知识,数据更新及时且灵活,不需要重新训练模型。

RAG的缺点

  • 依赖外部知识库:RAG技术的性能受到外部知识库质量和规模的影响,如果知识库不完善或存在错误,将影响生成文本的质量。
  • 检索模块挑战:检索模块是RAG技术的关键部分,如果检索不到相关信息或检索到的信息不准确,将影响生成文本的效果。
  • 系统架构复杂:RAG需要额外构建检索器、知识数据库等组件,系统架构相对复杂。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值