RAG与微调大模型在构建知识问答系统时各有优缺点。
RAG(Retrieval-Augmented Generation)的优点:
- 知识更新成本低:RAG技术无需重新训练整个模型,只需更新知识库即可实现知识的更新和扩展,降低了知识更新的成本。
- 提高答案准确性:通过检索相关知识,RAG能够提供更准确、更相关的答案,减少模型的幻觉现象。
- 增强可解释性:由于RAG生成的文本基于可检索的知识,因此用户可以验证答案的准确性,并增加对模型输出的信任。
- 数据更新灵活:RAG通过更新外部知识库来引入新知识,数据更新及时且灵活,不需要重新训练模型。
RAG的缺点:
- 依赖外部知识库:RAG技术的性能受到外部知识库质量和规模的影响,如果知识库不完善或存在错误,将影响生成文本的质量。
- 检索模块挑战:检索模块是RAG技术的关键部分,如果检索不到相关信息或检索到的信息不准确,将影响生成文本的效果。
- 系统架构复杂:RAG需要额外构建检索器、知识数据库等组件,系统架构相对复杂。