一、开源向量数据库
-
Milvus
- 核心优势:分布式架构支持千亿级向量规模,查询性能领先(QPS超百万级),提供HNSW、IVF-PQ等多样化索引算法,适合企业级大规模RAG应用。
- 适用场景:金融风控、生物医药分子库检索等需处理超大规模数据的场景。
-
Qdrant
- 技术特性:基于Rust语言开发,支持稀疏向量检索(速度提升16倍),提供标量量化和产品量化技术优化存储效率。
- 典型应用:电商推荐系统、广告精准投放等高并发场景。
-
Weaviate
- 创新功能:集成多模态处理能力(文本/图像/音频),内置知识图谱支持混合检索,提供GraphQL接口简化开发。
- 使用案例:跨媒体内容管理平台、智能客服多模态问答系统。
二、云原生服务
-
Pinecone
- 服务亮点:全托管自动扩缩容,实时数据更新延迟低于100ms,提供Serverless计费模式(按查询次数付费)。
- 推荐场景:SaaS产品快速集成,缺乏专业运维团队的中小企业。
-
腾讯云VectorDB
- 国产化方案:单索引支持千亿向量,集成AI套件实现文档自动向量化和精排检索,提供端到端RAG解决方案。
- 落地案例:政务知识库、金融合规审查等对数据主权要求高的场景。
三、轻量级工具
-
Chroma
- 开发友好:Python API集成Hugging Face生态,单机部署5分钟完成,支持快速验证RAG原型。
- 适用阶段:学术研究、初创团队MVP验证。
-
Faiss
- 性能标杆:Facebook开源的GPU加速检索库,百万级向量查询延迟低于10ms,常作为其他数据库的底层引擎。
- 典型用法:与Elasticsearch等系统组合构建混合检索架构。
四、传统数据库扩展
-
MongoDB Atlas
- 融合能力:在文档数据库中嵌入向量索引,支持每个文档存储16MB向量数据,事务处理与向量检索一体化。
- 优势场景:已有MongoDB基础设施的企业升级智能化应用。
-
PostgreSQL扩展
- 生态兼容:通过pgvector/pgvecto-rs插件支持向量检索,兼容现有SQL查询逻辑,迁移成本低。
- 适用对象:传统业务系统渐进式AI改造。
选择建议
考量维度 | 优先选项 |
---|---|
数据规模 | 十亿级选Milvus/腾讯云VectorDB,百万级选Chroma |
部署复杂度 | 云服务选Pinecone,私有化选Milvus/Qdrant |
多模态需求 | Weaviate或MongoDB Atlas |
成本敏感度 | 开源方案优先,小规模试用Chroma |