TransUNet:用于医学图像分割的Transformers

Transformer

Transformer也太火了,终于在医学图像分割领域用上了。

TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

作者分享了源码,感兴趣的可以看看。

把论文代码复现了一遍,做了少量修改,主要是将GroupNorm改成了BatchNorm,修个了一些层数和参数。

用在了大脑胶质瘤分割上,2D的处理方式,论文也是2D的处理形式,实在差劲;然后改成3D处理,还是差劲。


原图1
原图2

2D处理

2D分割

3D

3D分割


看上去2D处理效果仿佛不错,但是

### TransUnet 医学图像分割使用方法教程 #### 一、TransUnet简介 TransUnet是一种融合了Transformers和U-Net结构的新型深度学习模型,专为医学图像分割设计。该模型能够有效捕捉全局上下文信息并保持空间细节[^2]。 #### 二、环境搭建 要运行TransUnet项目,需先安装Python及其依赖库。推荐创建虚拟环境以隔离不同项目的包版本冲突。具体命令如下: ```bash conda create --name transunet python=3.8 conda activate transunet pip install torch torchvision torchaudio pip install -r requirements.txt ``` 其中`requirements.txt`文件应包含所有必要的第三方模块列表。 #### 三、数据准备 对于医学影像处理而言,高质量的数据集至关重要。可以考虑采用公开可用的标准测试集合如BraTS脑肿瘤分割挑战赛提供的MRI扫描图片作为训练样本。下载完成后按照官方文档说明整理成适合喂入网络的形式。 #### 四、配置参数设置 编辑配置文件config.py定义超参数选项,比如批次大小(batch size),迭代次数(num_epochs)等影响最终效果的关键因素。这部分可以根据实际硬件条件和个人需求灵活调整。 #### 五、构建与训练模型 加载预训练权重初始化部分层参数有助于加速收敛过程;接着实例化自定义损失函数类LossFunction()以及优化算法对象optimizer。最后调用fit()接口启动整个流程直至满足停止准则为止。 ```python from model import VisionTransformer as ViT_seg import config as cfg net = ViT_seg(cfg.config_vit, img_size=cfg.img_size, num_classes=cfg.num_classes).cuda() loss_fn = LossFunction().cuda() optim = optim.AdamW(net.parameters(), lr=lr) for epoch in range(epochs): ... ``` #### 六、评估预测结果 完成一轮完整的周期之后保存最佳状态字典至本地磁盘以便后续部署应用阶段读取恢复。同时编写辅助脚本计算各类评价指标衡量泛化能力的好坏程度。 ```python torch.save(model.state_dict(), 'best_model.pth') metrics = evaluate(test_loader, net) print(f"Dice score:{metrics['dice']:.4f}") ``` #### 七、可视化展示 借助matplotlib/seaborn等绘图工具直观呈现前后对比情况加深理解记忆点。也可以尝试其他开源平台分享成果吸引更多同行交流探讨共同进步成长。 ```python plt.figure(figsize=(10,5)) plt.subplot(1,2,1), plt.imshow(image.squeeze()), plt.title('Original Image') plt.subplot(1,2,2), plt.imshow(mask_pred.detach().cpu().numpy().squeeze()), plt.title('Predicted Mask') plt.show() ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JalexDooo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值