Transformer和UNet是两种常见的图像分割架构。然而,在图像分割时,Transformer由于low-level细节不足,存在定位能力不足的问题;而UNet则在显式建模长期依赖关系方面局限性大。
【Transformer+UNet】的融合方式,恰恰能充分发挥Transformer和UNet在医学图像分割方面的优势,弥补各自不足,产生显著的效果。因此,如果你正在纠结医学图像方向怎么找创新点,那不妨来看看这个方向!
今天我也在这里给大家分享三个简单好复现的模块,帮助大家轻松找到医学图像分割的创新点!
一:TransUNet
标题:
《TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation》
方法:
TransUNet 的核心组件是由 Transformer 编码器和 U-Net 解码器组成。在 Transformer 编码器部分,利用自注意力机制对输入的医学图像进行全局特征提取,能够捕捉长距离的依赖关系。在 U-Net 解码器部分,通过逐步上采样和融合编码器中的特征,恢复图像的空间分辨率,并结合局部特征进行更精细的分割。同时,在不同层次之间引入跳跃连接,将编码器中的低分辨率特征与解码器中的高分辨率特征相结合,以保留更多的细节信息。
创新点:
- 作者引入了 TransUNet,一种融合了 Transformer 和 U-Net 优势的网络:它结合了强大的全局特征提取能力和精细的局部特征恢复能力,通过有效地捕捉全局和局部特征来增强医学图像分割。编码器和解码器组件之间的上采样、下采样操作和跳跃连接有效地提供了归纳偏置并建模通道间的依赖关系。
- 在多个医学图像数据集上:TransUNet 与传统基于 CNN 的方法、基于 Transformer 的方法以及混合方法相比,具有更好的或可比较的性能。同时:TransUNet 具有更低的模型复杂度,包括更少的模型参数数量、更低的模型大小、更低的训练和推理时间以及更低的训练 FLOPs。
- TransUNet 建模长距离空间依赖关系的能力以及其在分割复杂和小型解剖结构方面的竞争力,使其成为临床应用的有前景的工具。该架构的设计,包括带有跳跃连接的 Transformer 编码器和 U-Net 解码器,使其在保持低于现有技术水平计算复杂性的同时,还能提供高性能。
二:DA-TransUNet
标题:
《DA-TransUNet: Integrating Spatial and Channel Dual Attention with Transformer U-Net for Medical Image Segmentation》
方法:
DA-TransUNet 的核心组件由改进的 Transformer 编码器和增强的 U-Net 解码器组成。在 Transformer 编码器部分,采用更加高效的自注意力机制变体,能够在不显著增加计算量的情况下更好地捕捉全局特征。同时,引入多尺度特征融合模块,将不同层次的特征进行融合,以获取更丰富的信息。在 U-Net 解码器部分,通过改进的上采样策略和更复杂的特征融合方式,进一步提升对局部细节的恢复能力。
创新点:
- 作者引入了 DA-TransUNet,一种高度优化的网络:它结合了先进的 Transformer 技术和精心改进的 U-Net 架构,通过有效地捕捉全局和局部特征来显著增强医学图像分割。编码器和解码器组件之间的精细设计的操作和动态连接有效地提供了强大的归纳偏置并建模复杂的通道间依赖关系。
- 2.在多个医学图像数据集上:DA-TransUNet 与传统方法以及其他类似网络相比,展现出卓越的性能。它具有更低的模型复杂度,包括更少的模型参数数量、更低的模型大小、更低的训练和推理时间以及更低的训练 FLOPs,同时实现了更高的分割精度。
- 3.DA-TransUNet 强大的建模长距离空间依赖关系的能力以及其在分割复杂和小型解剖结构方面的杰出竞争力,使其成为临床应用中极具前景的工具。该架构的独特设计,包括动态注意力机制和优化的 Transformer 编码器与 U-Net 解码器的组合,使其在保持低于现有技术水平计算复杂性的同时,能够提供前所未有的高性能。
三:GCtx-Unet
标题:
《GCtx-UNet:Eficient Network for Medical Image Segmentation》
方法:
GCtx-Unet 的核心组件是 GC-VIT 块。每个 GC-ViT 块包括局部和全局的多头自注意力(MSA)、多层感知机(MLP)、全局 Token 生成器(GTG)和下采样层。其中,局部 MSA 只能查询局部窗口内的块,而全局 MSA 可以在窗口内操作的同时查询不同的图像区域。GTG 组件为计算添加全局上下文。在每一阶段,全局 Query 组件都是预计算的。
创新点:
- 作者引入了 GCtx-Unet,一种 U 形网络:它结合了轻量级的视觉 Transformer,通过有效地捕捉全局和局部特征来增强医学图像分割。编码器和解码器组件之间的下采样和上采样块有效地提供了归纳偏置并建模通道间的依赖关系。
- 在多个医学图像数据集上,GCtx-Unet 与传统基于 CNN 的方法、基于 Transformer 的方法以及混合方法相比,具有更好的或可比较的性能。同时,GCtx-Unet 具有更低的模型复杂度,包括更少的模型参数数量、更低的模型大小、更低的训练和推理时间以及更低的训练 FLOPs。
- GCtx-Unet 建模长距离空间依赖关系的能力以及其在分割复杂和小型解剖结构方面的竞争力,使其成为临床应用的有前景的工具。该架构的设计,包括带有跳跃连接的 GC-ViT 编码和解码器,使其在保持低于现有技术水平计算复杂性的同时,还能提供高性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。