新鲜速递:图解新颖LLM的CoPE位置编码

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调重新阅读。而最新科技(Mamba,xLSTM,KAN)则提供了大模型领域最新技术跟踪。若对于具身智能感兴趣的请移步具身智能专栏。技术宅麻烦死磕AI架构设计

6月份第一天CoPE诞生了。与传统基于Token的位置编码不一样,CoPE采用上下文进行位置编码,进而帮助LLMs更好地进行计数任务。

快速总览

研究人员提出了一种新颖的位置编码方法,称为上下文位置编码(下文称之为CoPE),它有别于基于标记的传统位置编码范式。

  • 它以上下文依赖的方式测量位置,在按位置寻址时会更加自由

  • 它在如下的任务中获得不错的收益:Flip-Flop, Selective Copy, Counting, Language Modeling, and Code Modeling tasks

<think>嗯,用户想了解NTK(神经正切核)和位置编码的关系以及实现方法。首先,我需要回忆一下NTK的基础概念。NTK是用于分析神经网络在无限宽度极限下训练动态的理论工具,它描述了参数梯度之间的相关性。而位置编码,尤其是在Transformer模型中,用于为序列中的位置信息提供嵌入。常见的如正弦位置编码和可学习的位置嵌入。 接下来,用户提到的NTK与位置编码的关系可能涉及到如何利用NTK理论来改进或分析位置编码的效果。比如,最近有一些研究将NTK应用于调整位置编码的维度,以增强模型的外推能力,比如NTK-aware的位置编码。这种编码方法通过调整频率的衰减速度,使得模型在处理长序列时表现更好。 在实现方面,可能需要将传统的正弦位置编码进行修改,引入NTK理论中的频率调整策略。具体来说,可能需要对不同维度的频率进行不同程度的缩放,从而平衡高频和低频信息的保留。例如,通过调整基频和缩放因子,使得高维度的频率衰减更快,而低维度的频率衰减更慢,从而在保持局部信息的同时捕获长程依赖。 然后,我需要检查是否有相关的论文或开源代码实现了这种方法。比如,Meta的LLAMA模型可能采用了类似的改进位置编码方法。此外,Hugging Face的Transformers库中可能有相关的实现参考,比如在RoPE(旋转位置编码)中加入NTK-aware的调整。 用户可能的应用场景包括自然语言处理中的长文本建模,或者需要模型处理比训练时更长的序列时的外推能力。这时候,传统的正弦位置编码可能表现不佳,而NTK-aware的位置编码能够提升模型在长序列上的性能。 不过,需要注意NTK理论主要适用于无限宽度的神经网络,而实际中的模型是有限宽的,因此实际效果可能需要通过实验验证。此外,实现时需要考虑如何调整频率参数,以及是否需要进行超参数调优。 最后,用户可能还想了解具体的代码实现步骤,比如如何修改现有的位置编码层,调整频率计算公式,以及如何在训练和推理中应用这些调整。可能需要提供一个简化的代码示例,展示NTK-aware位置编码的实现方式,并解释关键参数的作用。</think>### NTK与位置编码的关系及实现方法 NTK(Neural Tangent Kernel)与位置编码的结合主要用于改进Transformer模型在处理长序列时的外推能力,尤其是在超出训练序列长度的场景下。其核心思想是通过调整位置编码的频率分布,平衡高频和低频信息的表达能力。 #### 1. **理论基础** - **NTK理论**:在无限宽神经网络中,NTK描述参数梯度之间的相关性,其频谱特性影响模型收敛性和泛化能力。 - **位置编码**:传统正弦位置编码(如RoPE)的每个维度对应不同频率,但高维频率衰减过快,导致长序列建模能力受限[^1]。 #### 2. **NTK-aware位置编码** 通过引入NTK理论调整频率衰减速度: - **频率调整公式**: $$ \theta_j = b^{-2j/d} \cdot \text{scale} $$ 其中$b$为基频参数,$j$为维度索引,$d$为总维度,$\text{scale}$控制衰减速度[^2]。 - **动态调整**:在训练中逐步增大$\text{scale}$,增强高频信号的外推能力。 #### 3. **实现步骤** 以改进的旋转位置编码(RoPE)为例: ```python import torch def ntk_rope_embedding(seq_len, dim, base=10000, scale=1.0): # 生成位置索引和维度索引 position = torch.arange(seq_len).unsqueeze(1) dim_idx = torch.arange(0, dim, 2).float() # NTK频率调整 theta = 1.0 / (base ** (dim_idx / dim)) * scale freqs = position * theta.unsqueeze(0) # 生成旋转矩阵 emb = torch.cat([freqs, freqs], dim=-1) return emb.sin(), emb.cos() ``` #### 4. **关键参数说明** - `base`:控制频率分布的基础值(默认10000) - `scale`:衰减调节因子(>1时增强高频保留) - 实际应用时可通过超参数搜索优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值