Android 文件目录 内部外部存储 sdcard 路径

一、 获取各种的Android的文件路径如下:

getPackageCodePath() = /data/app/包名/test.apk

getPackageResourcePath() = /data/app/包名/test.apk

getCacheDir() =/data/user/0/包名/cache

getDatabasePath(“test”) = /data/user/0/包名/databases/test

getDir(“test”, Context.MODE_PRIVATE)=/data/user/0/包名/app_test

getExternalCacheDir() =/storage/emulated/0/Android/data/包名/cache

getExternalFilesDir(“test”)= /storage/emulated/0/Android/data/包名/files/test

getExternalFilesDir(null) =/storage/emulated/0/Android/data/包名/files

getFilesDir() = /data/user/0/包名/files

Environment.getDataDirectory() = /data

Environment.getDownloadCacheDirectory() = /cache

Environment.getExternalStorageDirectory() = /storage/emulated/0

Environment.getExternalStoragePublicDirectory(“test”) =/storage/emulated/0/test

Environment.getRootDirectory() = /system

二、内部和外部存储定义
1、内部存储
常见就是我们的/data/data目录下的数据

2、外部存储
外部存储可以避免删除应用时被删去
我们现在大多手机都有很大的存储空间,所以不需要外置sd卡,但getExternalFilesDir获取的就是外部存储

3、sdcard
一些机型还是可以使用sdcard,路径与外部存储存在差异,所以想要读取可参照https://blog.csdn.net/chadeltu/article/details/43736093

三、不同Android设备和系统之间的【差异
1、/storage/sdcard0, /sdcard, /mnt/sdcard ,/storage/emulated/legacy
https://blog.csdn.net/ouyang_peng/article/details/47173367/差异来源
4.0版本:我们知道Linux中是挂载到mnt下,一开始目录是为/mnt/sdcard,但随着后来版本差异等原因,有了/sdcard、/storage/sdcard0,但实际可以理解指向都是为/mnt/sdcard
到了4.2之后因为一直在变动,所以直接挂载在/storage/emulated/legacy,而/storage/sdcard0, /sdcard, /mnt/sdcard都为软连接到/storage/emulated/legacy
而为什么要有一个0,这个是由于多用户原因,此处的多用户主要谷歌针对多个用户拥有私人的应用数据而出现的,如多一个用户那么0就变成1

2、/data/data,/data/user/0
实际是挂载在/data/user/0上,/data/data软连接到前者
所以路径才有了以上的差异,不同手机显示不同,但是实际上都指向同个路径
https://blog.csdn.net/itermeng/article/details/79423035

### 使用 PythonNumPy 生成随机数 #### 生成标准正态分布的随机数 可以利用 `numpy.random.randn()` 函数来获取来自标准正态分布(均0,方差为1)的样本。 ```python import numpy as np # 获取两个来自标准正态分布的浮点数数组 random_samples = np.random.randn(2) print(random_samples) # 输出类似于 [-0.78345655 0.9477277 ] ``` [^1] #### 创建指定范围内整数随机一维数组 通过调用 `np.random.randint(low, high=None, size=None)` 方法可创建给定范围内的随机整数。这里展示了一个例子,它会生成长度为10的一维数组,其中包含介于05之间(不包括5)的随机整数。 ```python import numpy as np arr = np.random.randint(0, 6, size=10) print(arr) ``` [^3] #### 设置随机种子以确保结果重现性 为了使每次运行程序时都能得到相同的结果,在执行任何其他命令之前应该先设定好随机种子。这可以通过调用 `np.random.seed(seed_value)` 来完成,`seed_value` 是一个任意选定的整数。 ```python import numpy as np np.random.seed(1) first_run = np.random.randint(2, 10, size=3) second_run = np.random.randint(2, 10, size=3) print(first_run) # 始终打印相同的三个数字 print(second_run) # 同样始终打印另外一组固定的三个数字 ``` [^4] #### 构建多维随机矩阵 如果需要构建一个多维度的随机整数矩阵,则可以直接向 `randint` 提供形状参数作为列表或元组形式传入。 ```python import numpy as np matrix = np.random.randint(1, 100, [5, 5]) print(matrix) ``` [^5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值