AI:大模型技术

文章探讨了AI领域的关键技术,如Prompt在聊天机器人和自然语言处理中的应用,FunctionCalling的编程范式,以及Plugins、GPTs、RAG和Embeddings在软件增强中的角色。还介绍了AI编程技术,如模型微调和多模态微调,以及AssistantsAPI和SemanticKernel在开发中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Prompt

Prompt(提示)是一种在人工智能领域,特别是在自然语言处理和聊天机器人中常用的技术。它是一种输入,用于激发人工智能模型生成相应的输出。在聊天机器人中,用户输入的问题或请求就是提示,而聊天机器人则根据这些提示来生成相应的回复。

例如,当用户向聊天机器人提问“今天的天气如何?”时,这个问题就是一个提示。聊天机器人会根据这个提示,查询相关的天气信息,并生成一个回答:“今天天气晴朗,气温在15到28摄氏度之间。”在这个过程中,提示起到了引导和激发聊天机器人生成回答的作用。

在自然语言处理中,提示也可以用于激发生成式模型生成文本。例如,在文本生成任务中,研究人员可以给定一个主题或情境作为提示,然后让生成式模型根据这个提示生成相应的文本。通过这种方式,研究人员可以更好地控制生成式模型的输出,使其更符合预期的结果。

总之,Prompt(提示)是一种在人工智能领域常用的技术,它用于激发人工智能模型生成相应的输出。在聊天机器人和自然语言处理等应用中,通过使用提示,可以更好地控制模型的输出,提高其性能和效果。

Agent + Function Calling

Agent + Function Calling 是一种编程范式,其中"Agent"是一个可以在某个环境下自主行动以实现某些目标的实体,而"Function Calling"是编程中的一种基本操作,用于调用函数以执行特定的任务。

在这种范式中,Agent 通过调用函数来实现其目标。这些函数可以是 Agent 自身的内部函数,也可以是外部库或模块中的函数。通过这种方式,Agent 可以根据其所处的环境和接收到的输入来决定采取何种行动。

这种编程范式在许多领域都有应用,例如在游戏开发、机器人技术、自动化和人工智能等领域。通过使用 Agent + Function Calling,开发人员可以创建出具有高度自主性和灵活性的实体,这些实体可以在复杂的环境中自主行动,以实现其目标。

Plugins和GPTs

Plugins(插件)和GPTs(生成式预训练模型)是两种不同的技术,但在实际应用中可以相互结合,共同发挥作用。

Plugins(插件)是一种软件组件,它可以为一个已有的软件应用程序增加新的功能或扩展其原有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值