前言
先来一张Q版图让大家看看效果
所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~
今天给大家介绍stable diffusion webui的界面。
如果还没安装的请看上一篇[24年最新的Stable Diffusion整合包安装]
界面布局
Stable Diffusion WebUI界面主要分为三个区域:模型选择区、功能选择区、参数配置区。
模型选择区:
模型分类:写实类、2.5D类、二次元类等,根据自己的需要进行下载。秋叶大佬的整合包默认放了一个二次元模型
想找合适的模型可以上civitai,需要科学上网。
或者使用国内的网站,liblib
下载时记得区分CHECKPOINT和LORA,CHECKPOINT是使用的基础模型,LORA是在基础模型上做了微调的模型。
vae模型:(Variational Auto-Encoder)
一般选择自动,SD1.*模型和SDXL模型的VAE不同,需要下载区分
用来压缩图片到一个更小的空间维度,图片通常包含大量的冗余信息,因此我们可以训练一个VAE,使其可以将图片映射到一个较小的隐式表征,并将这个较小的隐式表征映射到原始图片。这部分的原理我们会后续起一篇文章进行介绍。
功能选择区:
文生图:根据文本提示生成图像
图生图:图像生成图像;功能很强大,后续文章会做详细介绍。
后期处理:图片处理;功能很强大,后续文章会做详细介绍。
PNG信息:这是一个快速获取图片生成参数的便捷功能。如果图像是在SD里生成的,您可以使用“发送到”按钮将参数快速复制到各个页面。
模型融合:您最多可以组合 3 个模型来创建新模型。它通常用于混合两个或多个模型的风格。但是,不能保证合并结果。它有时会产生不需要的伪影。
训练:训练页面用于训练模型。它目前支持textual inversion(embedding) 和hypernetwork。
设置:设置里面的具体选项就不详细讲了,大家在后续使用中自行探索
更改任何设置后,记得单击“保存设置”后再重载界面。
扩展:安装扩展插件,后期文章我们会详细讲。
参数配置区:
- 选择模型
第一部分有详细介绍
- 正反提示词
描述您想在图像中看到的内容。
正向提示词:指定你想看到的内容
反向提示词:制定你不想看到的内容
3. 采样方式
去噪过程中的算法,不同的采样方式影响了图片生成的效果和速度
- 迭代步数
去噪过程中的采样步骤数。越多越好,但时间也会越长。太大后边图片也不会有太大变化。
5. 生成图片尺寸
设置输出图片的尺寸,当然设置越大,生成越慢。
6. 批次、数量
一次生成多少批次,每批次生成多少张图片。
7. CFG比例
提示词引导系数,用来控制模型遵守您的提示词的程度。
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
零基础AI绘画学习资源介绍
👉stable diffusion新手0基础入门PDF👈
👉AI绘画必备工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉AI绘画基础+速成+进阶使用教程👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末