贝叶斯滤波

贝叶斯滤波器

定义状态估计p(x | z, u) ,即又此时的observations和之前的控制命令,估计现在的状态。

  • 递归贝叶斯滤波器
    首先定义:bel(…)代表贝叶斯模型
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    由此得到了上一时刻位置的贝叶斯模型。

贝叶斯滤波器分为两步:
这里写图片描述
第一步很好理解,预测过程,即如何通过上一时刻位置的贝叶斯模型计算此刻的贝叶斯模型。
第二步,是校正过程,即又此刻的位置估计observations来强化贝叶斯模型的估计,最前面是正则化系数,所有T的正则化系数相加为1。

Motion models

这里写图片描述
主要分为Odometry Model和Velocity-based
Odometry Model有轮子编码器,Velocity-based不含轮子编码器。
Odometry Model:
这里写图片描述
Velocity-based:
这里写图片描述
这里写图片描述

Sensor Model

这里写图片描述




参考资料:
https://blog.csdn.net/qq_30159351/article/details/53395515

贝叶斯滤波是一种基于贝叶斯定理的概率滤波方法,用于估计系统状态的方法。在Matlab中,可以使用贝叶斯滤波工具箱(Bayesian Filtering Toolbox)来实现贝叶斯滤波贝叶斯滤波工具箱提供了多种贝叶斯滤波算法的实现,包括卡尔曼滤波、粒子滤波、扩展卡尔曼滤波等。这些算法可以用于不同类型的系统状态估计问题,如目标跟踪、传感器融合、机器人定位等。 在Matlab中使用贝叶斯滤波工具箱,首先需要安装该工具箱。安装完成后,可以通过调用相应的函数来实现贝叶斯滤波算法。例如,使用卡尔曼滤波可以调用`kalmanFilter`函数,使用粒子滤波可以调用`particleFilter`函数。 以下是一个简单的贝叶斯滤波示例代码,使用卡尔曼滤波对一个一维系统进行状态估计: ```matlab % 系统模型 A = 1; % 状态转移矩阵 H = 1; % 观测矩阵 Q = 0.1; % 状态噪声方差 R = 1; % 观测噪声方差 % 初始状态 x0 = 0; % 初始状态估计 P0 = 1; % 初始状态协方差 % 生成观测数据 T = 100; % 时间步数 true_states = zeros(T, 1); % 真实状态 observations = zeros(T, 1); % 观测值 for t = 1:T true_states(t) = A * true_states(max(t-1, 1)) + sqrt(Q) * randn; observations(t) = H * true_states(t) + sqrt(R) * randn; end % 使用卡尔曼滤波进行状态估计 filter = kalmanFilter(A, H, Q, R, x0, P0); estimated_states = zeros(T, 1); % 估计状态 for t = 1:T filter = filter.predict(); filter = filter.correct(observations(t)); estimated_states(t) = filter.State; end % 绘制结果 figure; plot(1:T, true_states, 'b-', 'LineWidth', 2); hold on; plot(1:T, observations, 'ro', 'MarkerSize', 5); plot(1:T, estimated_states, 'g--', 'LineWidth', 2); legend('真实状态', '观测值', '估计状态'); xlabel('时间步数'); ylabel('状态值'); ``` 这段代码演示了如何使用贝叶斯滤波工具箱中的`kalmanFilter`函数实现卡尔曼滤波,并对一个一维系统的状态进行估计。你可以根据自己的需求和系统模型进行相应的修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值