贝叶斯滤波

贝叶斯滤波器

定义状态估计p(x | z, u) ,即又此时的observations和之前的控制命令,估计现在的状态。

  • 递归贝叶斯滤波器
    首先定义:bel(…)代表贝叶斯模型
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    由此得到了上一时刻位置的贝叶斯模型。

贝叶斯滤波器分为两步:
这里写图片描述
第一步很好理解,预测过程,即如何通过上一时刻位置的贝叶斯模型计算此刻的贝叶斯模型。
第二步,是校正过程,即又此刻的位置估计observations来强化贝叶斯模型的估计,最前面是正则化系数,所有T的正则化系数相加为1。

Motion models

这里写图片描述
主要分为Odometry Model和Velocity-based
Odometry Model有轮子编码器,Velocity-based不含轮子编码器。
Odometry Model:
这里写图片描述
Velocity-based:
这里写图片描述
这里写图片描述

Sensor Model

这里写图片描述




参考资料:
https://blog.csdn.net/qq_30159351/article/details/53395515

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值