贝叶斯滤波器
定义状态估计p(x | z, u) ,即又此时的observations和之前的控制命令,估计现在的状态。
- 递归贝叶斯滤波器
首先定义:bel(…)代表贝叶斯模型
由此得到了上一时刻位置的贝叶斯模型。
贝叶斯滤波器分为两步:
第一步很好理解,预测过程,即如何通过上一时刻位置的贝叶斯模型计算此刻的贝叶斯模型。
第二步,是校正过程,即又此刻的位置估计observations来强化贝叶斯模型的估计,最前面是正则化系数,所有T的正则化系数相加为1。
Motion models
主要分为Odometry Model和Velocity-based
Odometry Model有轮子编码器,Velocity-based不含轮子编码器。
Odometry Model:
Velocity-based:
Sensor Model
参考资料:
https://blog.csdn.net/qq_30159351/article/details/53395515