我试用了50个AI工具——AI正在如何改变设计方式

探索AI如何重塑用户引导、用户预期和产品体验。

作者:Ben

为啥还要学Photoshop?你那AI实习生几秒就能搞定。(图片用AI生成)

引言:

📩 本文基于我亲测50款AI产品后的真实总结,记录了我观察到的设计趋势和用户变化。
如果你也在打造AI产品或研究用户体验优化,不妨一起交流 👉 可后台私信我【AI体验手册】,我整理了一份实战笔记合集。

正文:

人类在使用产品时变得越来越没有耐心。
加州大学的一项研究发现,人们专注在一个屏幕上的时间,从2003年的2.5分钟,下降到了2020年的仅仅47秒。
对我们这些做产品的人来说,这意味着我们只有不到一分钟的时间去抓住用户兴趣,否则他们就跳去别的地方了。
而在这个AI时代,情况只会更糟。

以前我们得买书来学Photoshop。以前用SaaS产品的时候,我们得看提示框、操作引导、产品教学手册。
但现在,AI把用户预期从“给我一个工具让我学习并创作”变成了“你直接帮我干活”。
比如,不用再自己学着在Google Docs、VS Code 或 Figma 里搞内容,像 Bolt、V0、MidJourney、Cursor、Flora 这些AI产品,已经开始替我们动手搞定一切。

AI 工具像 Bolt、V0 和 MidJourney,把用户预期从“我要学着做”转向“你直接给我做好”

🔍 顺带一提,这些趋势我也做了整理,做成了一张「AI产品设计趋势图谱」和一份「LLM产品引导结构表」,有需要的可以在评论或私信区说【趋势图】,我发你一份。

我试了50AI产品后的心得
接下来我会带你看看,我过去三个月试用50多个AI产品时发现的一些规律。
我会讲讲什么方式有效,什么方式踩坑,以及有哪些趋势正在形成。

我试过的一些工具一览

1. 对话式的用户引导遍地开花
如果你年纪够大,你可能记得 Facebook Messenger 上那阵子到处都是聊天机器人。
那时,很多餐厅和商店的粉丝页都靠聊天机器人来处理顾客请求。

早期 Facebook Messenger 聊天机器人挂得快,主要是AI太烂、场景选错、用户信任度低


最后 Facebook 也不得不关掉这服务,主要就三个原因:AI质量差、使用场景错、不被用户信任。

但现在有了 LLM(大语言模型)和像 ChatGPT、Claude、Perplexity 这样的产品,对话式UI强势回归——
不仅用于AI互动,也开始大量用在用户引导场景里。

比如建站工具 Wegic 和演示工具 Gamma,都用对话式引导来一步一步带用户注册、创建自己想要的网站或演示文稿。
这些AI助手可以理解用户需求、风格和语气,搞定复杂场景、带点个性,还能清晰地指导用户怎么完成任务,整个过程又轻松又流畅。

现代AI用户引导工具比如 Wegic 和 Gamma,用对话界面无缝带用户入门。

为什么这趋势火了?
两个心理学原因:

  1. 确认偏误:用户找工具时喜欢找能印证他们已有想法的证据。AI可以给他们个性化内容或推荐,强化正面印象,推动他们继续引导流程。
  2. 降低认知负担:传统引导流程常常是提示框、选项卡、上百个模板。心理学研究说,用户更愿意动手的前提是门槛低。AI引导能把复杂步骤拆成小块互动,帮用户更快搞定事。

Typeform 就把原来从模板开始的流程,改成了先写提示语(prompt)。

2. 语音助手回来了
几年前,Siri 是最火的语音助手,但我们都知道它常常“我帮不了你”,搞得人崩溃、失望。

事实上,Siri 在美国的市场份额从2020年的16.9%暴跌到2024年的3.8%。

Siri:给的回答太拉了…(来源:Reddit 帖子)


 

好在近几年AI大升级,语音助手变成熟了,真能帮人做事,用起来自然得多。

斯坦福的研究还指出,人类说话的速度是打字的三倍——更能快速表达想法和做决策。
所以现在 ChatGPT、Perplexity、Gemini 等都支持语音模式了,用户直接说话就能互动。

AI语音助手让你更快说出想法、完成任务。

为啥这个趋势火了?

  1. 拟人化偏误:人听到拟人化声音就容易当它是个“人”,社交认知系统就被激活,互动感觉更自然,信任感也更强。
  2. 增加信任:最近研究显示,AI用跟用户声音相似的语音,能显著提高信任和好感,更容易让用户留下来。

3. 个性化正在成为标配
你要是了解PLG、用户引导、激活、增长领域,那你肯定知道“个性化一定能提高转化率”这点没人反对。
但以前想搞个性化要时间、要大钱。比如 Netflix 就说他们花了“超10亿美元”训练推荐和个性化系统。

现在有了AI,这门槛低太多了,基础个性化已经不再是奢侈品了。
比如建站平台 Wix 说他们用公司名、职位、使用场景这类信息,搭配LLM给用户发个性化邮件和推荐,结果打开率和点击率提升了13%。

为啥这趋势火?
人天生会过滤无用信息,只关注跟自己有关的。比如在嘈杂环境下听到自己名字马上能注意到。
产品上讲,就是:你给用户看相关内容,他们就更可能有行动。
所以邮件里加个真人头像、CEO的名字,点击率就会高。

有张Mike的头像的邮件你是不是一眼就注意到了?

4. 工具直接帮你搞定初稿
几年前,所有产品面临最大的问题之一就是“空白画布”——用户注册后,不知道从哪开始,因为还没内容或数据。
这种情况对复杂产品尤其致命,比如 Airtable、Figma、Spotify 这种。

Spotify 和其他平台早就为“空白画布”问题头疼。

这些年大家尝试过很多方法,比如提供模板、示范数据、教学引导。
但现在有了AI,很多产品更倾向让用户直接写个提示词——产品直接生出个初稿。

这样一来,用户更快体验到产品价值,挫败感也更少。

比如 Airtable 现在不再搞什么清单式引导,而是直接问你想干啥——AI自动帮你建一个App出来。

从勾选清单变成了对话。

还有 Bolt、Replit、Glide 这些工具,直接让用户说出想做啥,AI立马出个初版,用户再自己调整完善。

Bolt、Replit、Glide 这些工具可以根据简单提示快速生成初稿。

为啥这趋势火?
心理学上讲,人对“已经是自己的东西”更愿意继续完善和使用。
哪怕AI版本不完美,用户因为觉得“这东西是我的”,就更愿意继续改、继续用。

5. 引导用户如何写好提示语
接上面一点,因为产品希望用户能搞出一个不错的初稿并且走对方向,越来越多的工具开始教你怎么写提示词。

我发现几个做法:

帮用户改写提示
• 写一个高质量提示很难,所以像 V0 这种工具,旁边有个小按钮可以帮你润色提示,加更多背景信息,生成更靠谱的结果。

像V0这样的工具会帮你重写提示,让AI输出更好。

问更明确的问题
像 Google Studio 或 ChatGPT 的思维模型那样,会追问更多细节,让用户补充上下文,帮助AI更精准生成结果。

AI 工具如 Google Studio 会引导用户加上下文,以获得更准结果。

要求相关材料
像 Gamma 或 DataButton 这类工具会要用户上传额外文件,比如语气、风格、产品文档(PRD),让AI能理解全貌,做出有意义的东西。

平台如 Gamma 和 DataButton 会请求额外上下文以提高输出准确度(图来自 DataButton)

为啥这趋势火?
做产品时我们最想让用户尽快进入“AHA!”时刻。
帮用户早期写出一个好提示,能显著提升第一次体验的效果,也更容易让用户理解产品价值。

6. 按需支持(随时向AI提问)
我还发现一个新模式,就是越来越多产品都有“随便问AI”这种功能。

现在很多用户不爱看引导了,直接跳进产品里搞。
但跳过引导≠不需要帮助,他们只是想在需要的时候得到支持。

虽然AI能帮用户快速干活,但很多SaaS产品还是需要手动和自动混合操作,用户经常找不到功能或记不住怎么设置。

这时候,“随便问AI”就特别有用了,比如:

• 发现没注意到的功能
• 自动化多步操作
• 不用翻文档也能搞清楚怎么达成目标

Notion、Microsoft Copilot、Gemini 这些工具都有AI助手,随时可调,用来整理文档、格式化表格、找菜单、搞定问题。

按需AI支持让用户随时发现功能、解决问题。

为啥这趋势火?

  1. 认知负担理论:传统引导常常一开始塞太多信息,压垮用户。AI则是在你需要的时候才给你帮助,减少负担。
  2. 乐观偏误:知道随时有个AI助手撑着,用户就更有信心去试功能,哪怕没接触过的。这样一来用户参与度自然就高了。

7. 先交钱再用
最后,我在试这么多AI产品时发现一个有点难过的现象,就是越来越多产品开始用“先付费再试用”的模式了——用户得先订阅、付款,才能体验产品。

这主要是因为AI API成本高,但也把用户体验搞砸了。

在看到魔法之前,请先投币继续……

这种方式也有心理学上的风险:

心理抗拒:用户觉得自由被剥夺(比如“还没试就要钱?”),就容易反感、退出。
预期落差:习惯了免费模式的用户,突然遇到付费墙,会感到意外甚至失望。

所以产品必须在最开始就清楚传达价值,可以通过演示、客户证言或退款保证等方式。哪怕只是一点点的预览,也能帮用户降低不确定感、建立信任,从而更愿意尝试。

总结
我们正在进入一个新时代:用户不仅希望产品帮他们完成任务,而是直接替他们完成任务并立刻体现价值。
虽然变化节奏可能令人焦虑,但正如 Reforge 的 Brian Balfour 所说:我们应该“少去预测AI的长期未来,多去理解AI正在如何改变用户的预期”。

不管AI怎么变,做产品的核心永远不变——倾听用户,理解他们的痛点与期望,做出真正满足他们需求的东西。

💡 写这篇文章的初衷,是希望能给那些正在打磨AI体验、探索用户交互方式的朋友一些启发。
🚀 我也在持续研究AI在产品落地中的作用,欢迎关注我,一起深入聊聊如何从“工具”走向“价值交付”。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值