TensorRT(一)Windows+Anaconda配置TensorRT环境 (Python版 )

本文详述了在Windows10环境下,如何使用Anaconda创建虚拟环境并安装TensorRT、CUDA Toolkit和CuDNN。步骤包括创建虚拟环境、安装CUDA Toolkit、安装CuDNN、配置TensorRT系统环境变量、安装TensorRT及其依赖Pycuda,并通过样例测试验证安装成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文地址:ZhouJianGuo|个人博客https://www.zhoujianguo.ltd/#/fore/article?id=134

本文主要记录一下,windows+Anaconda配置TensorRT的教程,通过此教程配置完TensorRT后,可以在Anaconda的虚拟环境内使用TensorRT

注意:本文背景环境为Windows 10 和 Anaconda已经安装好,若没有安装好,可以参考之前的一篇文章 点击这里进行跳转,里面记录了Anaconda的相关教程

一、创建虚拟环境

进入conda命令控制台,进入方法如下图所示

输入以下指令

conda create -n tensorrt python=3.8

输入y即可,输入以下指令进入创建好的虚拟环境

activate tensorrt

二、安装CudaToolKit

前往官网下载cudatoolkit,点击这里进行跳转,选择合适的版本后下载,建议下载local包,一步到位,本教程的环境是windows 10,选择结果如下图所示

下载完成后全程next即可

,安装完成以后,可以输入以下指令以检测cudatoolkit是否可用

nvcc -V

三、安装CUDNN

前往官网下载cudnn安装包点击这里进行跳转,注意要选择与cudatoolkit版本相兼容的cudnn,这里我们选择cudnn8.2.1对应的windows版本,如下图所示:

下载解压后可以看到有lib include bin三个子目录,如下图所示,将这三个子文件夹直接复制

复制完毕后,打开cudatoolkit的安装目录,例如:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA,然后直接对应版本的cudatoolkit文件目录下粘贴即可,如下图所示

还需要将cudatoolkit目录下的bin、include和lib路径添加到环境变量中。右键桌面的此电脑,点击左侧最下方的高级系统设置,如下图所示

选择环境变量,如下图所示

点击系统环境变量的path,点击新建,将刚才复制的路径粘贴进来,如下图所示(注意:默认bin目录已经是系统环境变量的,如下图第一条所示,如果已经有的话就不要再添加bin的路径了

四、安装TensorRT

4.1 下载TensorRT

首先,前往官网下载TensorRT点击这里进行跳转,这一步需要注册为英伟达开发者用户,这里就不再过多介绍了,登录后会出现不同版本的tensorrt资源,如下图所示。

本文使用的是tensorrt版本为8,点击展开,根据系统版本以及cudatoolkit版本选择对应的资源,根据本文背景环境,选择的版本如下图所示:

4.2 配置TensorRT系统环境变量

下载完毕后,进行解压,并且进入lib子文件夹,如下图所示,将路径复制下来,例如,C:\Users\admin\Downloads\Compressed\TensorRT-8.2.1.8\lib

依次确定保存出来即可。

4.3 安装TensorRT依赖

进入刚才解压后的TensorRT文件夹内的python子目录,根据python版本选择好对用的whl文件,如下图所示。

重新打开conda控制台(一定要重新打开,环境变量发生改动后,cmd并不会刷新!!),重新进入tensorrt的虚拟环境。

activate tensorrt

拼接路径 C:\Users\admin\Downloads\Compressed\TensorRT-8.2.1.8\python\tensorrt-8.2.1.8-cp38-none-win_amd64.whl,输入以下指令并执行,执行结果如下图所示。

pip install C:\Users\admin\Downloads\Compressed\TensorRT-8.2.1.8\python\tensorrt-8.2.1.8-cp38-none-win_amd64.whl

安装完成后会出现successfully的字样,到这里tensorrt已经安装结束

五、安装Pycuda

pycuda依赖是封装好的cuda api接口,可以用来申请显存等操作。

前往下载合适的版本,点击这里跳转,如下图所示。

进入下载的位置,拼接好路径,例如:c:\users\admin\downloads\pycuda-2021.1+cuda115-cp38-cp38-win_amd64.whl

进入tensorrt虚拟环境后,输入以下指令安装pycuda

pip install c:\users\admin\downloads\pycuda-2021.1+cuda115-cp38-cp38-win_amd64.whl

安装完成后会提示successfully installed的信息

六、测试TensorRT 样例

tensorrt官方提供了可供测试的样例,进入刚才下载好的tensorrt文件夹下面的samples\python\目录下,这里我们选择一个手写数字识别的示例,如下图所示。

拷贝路径,在tensorrt的虚拟环境下,cd 此路径,然后输入如下指令

python sample.py

此时会进行训练,并且在训练结束后给出相应的预测结果,如下图所示,到此为止,tensorrt已经彻底安装完毕

七、结语

可能是因为使用PC配置tensorrt的人比较少,再加上anaconda环境下,使用的人更加少之又少,其实安装教程,英伟达有参考文档的(在tensorrt安装包解压目录下的doc子目录,纯英文版),但是里面并没有提到anaconda。这次配置环境后我才明白anaconda和操作系统的环境并不是上下层关系,而是并存关系,即操作系统存在的依赖,虚拟环境都会有,但是反之则不是。

八、问题笔记

不要下载8.3.1 for cuda 11.5版本的cudnn,有bug,如下图所示,百度了一下,好像有人也遇到了问题

### 回答1: TensorRT是NVIDIA推出的深度学习推理引擎,可以在GPU上高效地运行深度学习模型。TensorRT支持Windows平台,可以通过以下步骤安装: 1. 安装CUDA和cuDNN:TensorRT需要依赖CUDA和cuDNN,需要先安装它们。可以从NVIDIA官网下载对应本的CUDA和cuDNN,并按照官方文档进行安装。 2. 下载TensorRT:可以从NVIDIA官网下载对应本的TensorRT,下载完成后解压到指定目录。 3. 安装TensorRT Python API:TensorRT提供了Python API,可以通过pip安装。打开命令行窗口,输入以下命令: ``` pip install tensorrt ``` 4. 安装TensorRT UFF Parser:如果需要使用UFF格式的模型,需要安装TensorRT UFF Parser。可以通过pip安装。打开命令行窗口,输入以下命令: ``` pip install uff ``` 安装完成后,就可以在Windows平台上使用TensorRT了。 ### 回答2: TensorRT是NVIDIA推出的个高效的深度神经网络推理引擎,可以大幅提升神经网络在GPU上的运行速度。TensorRT支持多种深度学习框架,如TensorFlow、Caffe和PyTorch等。在本文中,我们将探讨如何在Windows环境中使用Python安装TensorRT。 1. 准备工作 在安装TensorRT之前,需要先安装CUDA和cuDNN。TensorRT依赖于CUDA和cuDNN,并且需要使用与您的GPU型号相对应本的CUDA和cuDNN。 首先,下载并安装适合您GPU的CUDA软件包。然后,下载cuDNN库并将其解压缩到CUDA的安装目录中。例如,如果您的CUDA安装在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1路径下,那么解压cuDNN库后应该将库文件放在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\路径下。 2. 下载TensorRT 在完成CUDA和cuDNN的安装后,就可以下载TensorRT了。首先,进入NVIDIA官方网站(https://developer.nvidia.com/nvidia-tensorrt-download)下载TensorRT软件包。下载完成后,解压缩到您喜欢的目录中。例如,将TensorRT解压缩到C:\TensorRT路径下。 3. 配置环境变量 接下来,要将TensorRT的路径添加到环境变量中。在Windows环境中,打开“控制面板”->“系统和安全”->“系统”,然后点击“高级系统设置”->“环境变量”按钮。在“系统变量”中,找到“Path”变量并点击“编辑”按钮。在“变量值”框中添加TensorRT的bin和lib路径,例如:C:\TensorRT\bin;C:\TensorRT\lib; 4. 安装Python包 在安装Python之前,需要将Anaconda环境添加到环境变量中。如果您没有安装Anaconda环境,请先下载并安装Anaconda。在Windows环境中,打开“控制面板”->“系统和安全”->“系统”,然后点击“高级系统设置”->“环境变量”按钮。在“用户变量”中,找到“Path”变量并点击“编辑”按钮。在“变量值”框中添加Anaconda的路径,例如:C:\ProgramData\Anaconda3\Scripts;C:\ProgramData\Anaconda3\; 然后,通过pip命令安装TensorRT Python包。在Anaconda命令行窗口中,输入以下命令: pip install tensorrt 5. 测试安装 完成TensorRT Python包的安装后,可以使用Python脚本测试安装是否成功。创建个新的Python脚本,并将以下代码复制并粘贴: import tensorrt as trt print(trt.__version__) 保存脚本后运行,如果输出正确的TensorRT本号,则表明安装成功。可以使用TensorRT创建和优化神经网络模型了。 综上所述,TensorRTWindows环境中的安装步骤如上所述。安装前需要确认CUDA和cuDNN已成功安装,安装时需要添加环境变量并使用pip工具安装TensorRT Python包。 ### 回答3: TensorRT个可用于高性能深度学习推理的软件库,可以在GPU上进行加速。对于Windows系统和Python用户来说,安装TensorRT相对来说比较简单,但也需要定的操作步骤,下面将详细介绍如何安装TensorRT。 首先,需要在NVIDIA官网上下载TensorRT的安装程序,这里提供的是TensorRT 5.1.5本的下载地址:https://developer.nvidia.com/nvidia-tensorrt-5x-download,选择对应的Windows本,下载后进行安装。 其次,安装完成后需要配置TensorRT环境变量,将TensorRT的bin目录添加到PATH环境变量中,这样就能够在命令行中使用TensorRT相关命令了。同样需要将TensorRT的include和lib目录添加到对应的环境变量中,以便在调用TensorRT库时能够正确编译。 接着,安装TensorRTPython包,可以通过pip安装,打开命令行直接输入以下指令: ``` pip install tensorrt ``` 安装完成后,调用TensorRT就可以在Python中使用了。此外,还需要安装对应的TensorFlow和Python本,以及NVIDIA的CUDA和cuDNN软件包,以便与TensorRT起使用。 最后,验证TensorRT的安装是否成功。在Python中导入TensorRT库,进行简单的模型推理测试。如果能够成功进行推理操作,那么就说明TensorRT的安装已经成功了。 总之,TensorRTWindows系统下的安装还是比较简单的,只需要按照上述步骤进行操作即可。当然,安装过程中也有可能会遇到些问题,比如环境变量没有设置正确等,这时就需要仔细查看错误信息进行调整了。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值