待研究课题记录

最近了解到两个新的有趣的节点,但是对于实际效果不是很确定,所以这里记录下,后续慢慢研究:

扰动注意力引导

Perturbed Attention Guidance

GitHub - KU-CVLAB/Perturbed-Attention-Guidance: Official implementation of "Perturbed-Attention Guidance"

按照官方介绍,扰动注意力指导显著提高了扩散模型的样本质量,而无需外部条件(例如类标签或文本提示)或额外训练。这在无条件生成设置中特别有价值,因为无分类器指导 (CFG) 不适用。我们的指导可用于增强利用无条件扩散模型的各种下游任务的性能,包括带有空提示的 ControlNet 和超分辨率和修复等图像恢复任务。

Depth Anything V2

按照官方介绍,Depth Anything V2,在细粒度细节和鲁棒性方面明显优于V1 ,与基于 SD 的模型相比,其推理速度更快、参数更少、深度精度更高。

GitHub - DepthAnything/Depth-Anything-V2: Depth Anything V2. A More Capable Foundation Model for Monocular Depth Estimation

值得测试下效果。

✨写在最后

如果对comfyui还不熟悉的话,最近面向ComfyUI的新手,开了一门图文课程,现在已经更新完成了,如果大家在学习过程中遇到什么问题,也可以直接文章下留言,会持续更新相关答疑内容哈。欢迎订阅哦~

https://blog.csdn.net/jumengxiaoketang/category_12683612.html

感谢大家的支持~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值