Park, J. S., Zou, C. Q., Shaw, A., Hill, B. M., Cai, C., Morris, M. R., Willer, R., Liang, P., & Bernstein, M. S. (2024). Generative agent simulations of 1,000 people. arXiv. https://doi.org/10.48550/arXiv.2411.10109
(本论文共65页=12页论文+支撑材料,通过ChatGPT进行拆解阅读)
概述
本文探讨了一种新颖的生成式代理(Generative Agent)架构,该架构结合了详细的定性访谈和大语言模型(LLMs),用于模拟超过1,000名个体的行为和态度。这些代理旨在通过定性洞察,在多种场景下模拟人类行为,并预测在社会科学调查、人格评估和实验任务中的真实反应。
关键发现
1.预测准确性:
生成式代理在综合社会调查(GSS)问题上表现出显著的预测准确性,实现了85%的标准化准确率,与参与者自身在不同时间点回答的一致性相当。
2.行为洞察:
代理(Agent)成功预测了个体和集体行为,并以高度相关的结果再现了社会科学实验中的人类结果。
3.访谈效率:
与其他数据收集方法相比,访谈数据提供了更丰富和可靠的信息,即使是使用访谈摘要或部分访谈记录时亦是如此。
4.偏差缓解:
该架构减少了在人口统计子群体(如政治意识形态、种族和性别)中的偏差,不同种族和意识形态群体的表

最低0.47元/天 解锁文章
29万+






