【高等传热学】拉梅系数

在解决实际的导热问题时,首先需要选择适当的坐标系,以减少自变量的数目和便于边界条件的表达。例如,矩形区域中的问题可采用直角坐标系,而圆柱体中的导热则采用柱坐标系更为方便。

如果在空间任一点处沿坐标轴方向的单位向量都两两垂直,则称该坐标系为正交坐标系。在推导正交坐标系下的导热微分方程时,需要知道微元弧长,以计算微元面积、微元体积。
拉梅系数(也称尺度系数、度规系数),是在直角坐标系中空间曲线弧长的微分和在其他正交坐标系中空间曲线弧长的微分之间的比例系数。
正交坐标系

正交坐标 u 1 , u 2 , u 3 u_1, u_2, u_3 u1,u2,u3与直角坐标 x , y , z x, y, z x,y,z之间的函数关系为
x = X ( u 1 , u 2 , u 3 ) y = Y ( u 1 , u 2 , u 3 ) z = Z ( u 1 , u 2 , u 3 ) \begin{equation} x=X(u_1,u_2,u_3) \\y=Y(u_1,u_2,u_3) \\z=Z(u_1,u_2,u_3) \end{equation} x=X(u1,u2,u3)y=Y(u1,u2,u3)z=Z(u1,u2,u3)
x , y , z x, y, z x,y,z看成是多元函数,它们的全微分为
d x = ∑ i = 1 3 ∂ X ∂ u i d u i d y = ∑ i = 1 3 ∂ Y ∂ u i d u i d z = ∑ i = 1 3 ∂ Z ∂ u i d u i \begin{align} dx=\sum_{i=1}^{3}\frac{\partial X}{\partial u_{i}}du_{i}\\ dy=\sum_{i=1}^{3}\frac{\partial Y}{\partial u_{i}}du_{i}\\ dz=\sum_{i=1}^{3}\frac{\partial Z}{\partial u_{i}}du_{i} \end{align} dx=i=13uiXduidy=i=13uiYduidz=i=13uiZdui
我们知道,直角坐标系下的微分弧长为
d l = ( d x ) 2 + ( d y ) 2 + ( d z ) 2 \begin{equation} dl=\sqrt{\left(dx\right)^2+\left(dy\right)^2+\left(dz\right)^2} \end{equation} dl=(dx)2+(dy)2+(dz)2
将(2)~(4)式代入(5)式,得
d l = ∑ i = 1 3 ( ∂ X ∂ u i ) 2 + ( ∂ Y ∂ u i ) 2 + ( ∂ Z ∂ u i ) 2 d u i \begin{equation} dl=\sum_{i=1}^3\sqrt{\left(\frac{\partial X}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Y}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Z}{\partial u_{i}}\right)^{2}}du_i \end{equation} dl=i=13(uiX)2+(uiY)2+(uiZ)2 dui

H i = ( ∂ X ∂ u i ) 2 + ( ∂ Y ∂ u i ) 2 + ( ∂ Z ∂ u i ) 2 \begin{equation} H_{i}=\sqrt{\left(\frac{\partial X}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Y}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Z}{\partial u_{i}}\right)^{2}} \end{equation} Hi=(uiX)2+(uiY)2+(uiZ)2
H i ( i = 1 , 2 , 3 ) H_i(i=1,2,3) Hii=1,2,3称为拉梅系数。
正交坐标系微元六面体

微元体的边长
d l 1 = ( d x ) 2 + ( d y ) 2 + ( d z ) 2 \begin{equation} dl_1=\sqrt{(dx)^2+(dy)^2+(dz)^2} \end{equation} dl1=(dx)2+(dy)2+(dz)2
由于边长 l 1 l_1 l1 u 1 u_1 u1坐标轴上,只有坐标 u 1 u_1 u1有变化, d u 2 = d u 3 = 0 du_2=du_3=0 du2=du3=0
d x = ∑ i = 1 3 ∂ X ∂ u i d u i = ∂ X ∂ u 1 d u 1 \begin{equation} dx=\sum_{i=1}^{3}\frac{\partial X}{\partial u_{i}}du_{i}=\frac{\partial X}{\partial u_{1}}du_{1} \end{equation} dx=i=13uiXdui=u1Xdu1
同理,
d y = ∂ Y ∂ u 1 d u 1 d z = ∂ Z ∂ u 1 d u 1 \begin{align} dy=\frac{\partial Y}{\partial u_{1}}du_{1}\\ dz=\frac{\partial Z}{\partial u_1}du_1 \end{align} dy=u1Ydu1dz=u1Zdu1
将(9)~(11)式代入(8)式中,
d l 1 = ( ∂ X ∂ u 1 ) 2 + ( ∂ Y ∂ u 1 ) 2 + ( ∂ Z ∂ u 1 ) 2 ⋅ d u 1 = H 1 ⋅ d u 1 \begin{equation} dl_{1}=\sqrt{(\frac{\partial X}{\partial u_{1}})^{2}+(\frac{\partial Y}{\partial u_{1}})^{2}+(\frac{\partial Z}{\partial u_{1}})^{2}}\cdot du_{1}=H_1\cdot du_{1} \end{equation} dl1=(u1X)2+(u1Y)2+(u1Z)2 du1=H1du1
同理,
d l 2 = ( ∂ X ∂ u 2 ) 2 + ( ∂ Y ∂ u 2 ) 2 + ( ∂ Z ∂ u 2 ) 2 ⋅ d u 2 = H 2 ⋅ d u 2 d l 3 = ( ∂ X ∂ u 3 ) 2 + ( ∂ Y ∂ u 3 ) 2 + ( ∂ Z ∂ u 3 ) 2 ⋅ d u 3 = H 3 ⋅ d u 3 \begin{align} dl_{2}=\sqrt{(\frac{\partial X}{\partial u_{2}})^{2}+(\frac{\partial Y}{\partial u_{2}})^{2}+(\frac{\partial Z}{\partial u_{2}})^{2}}\cdot du_{2}=H_2\cdot du_{2}\\ dl_{3}=\sqrt{(\frac{\partial X}{\partial u_{3}})^{2}+(\frac{\partial Y}{\partial u_{3}})^{2}+(\frac{\partial Z}{\partial u_{3}})^{2}}\cdot du_{3}=H_3\cdot du_{3} \end{align} dl2=(u2X)2+(u2Y)2+(u2Z)2 du2=H2du2dl3=(u3X)2+(u3Y)2+(u3Z)2 du3=H3du3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值