【高等传热学】拉梅系数

在解决实际的导热问题时,首先需要选择适当的坐标系,以减少自变量的数目和便于边界条件的表达。例如,矩形区域中的问题可采用直角坐标系,而圆柱体中的导热则采用柱坐标系更为方便。

如果在空间任一点处沿坐标轴方向的单位向量都两两垂直,则称该坐标系为正交坐标系。在推导正交坐标系下的导热微分方程时,需要知道微元弧长,以计算微元面积、微元体积。
拉梅系数(也称尺度系数、度规系数),是在直角坐标系中空间曲线弧长的微分和在其他正交坐标系中空间曲线弧长的微分之间的比例系数。
正交坐标系

正交坐标 u 1 , u 2 , u 3 u_1, u_2, u_3 u1,u2,u3与直角坐标 x , y , z x, y, z x,y,z之间的函数关系为
x = X ( u 1 , u 2 , u 3 ) y = Y ( u 1 , u 2 , u 3 ) z = Z ( u 1 , u 2 , u 3 ) \begin{equation} x=X(u_1,u_2,u_3) \\y=Y(u_1,u_2,u_3) \\z=Z(u_1,u_2,u_3) \end{equation} x=X(u1,u2,u3)y=Y(u1,u2,u3)z=Z(u1,u2,u3)
x , y , z x, y, z x,y,z看成是多元函数,它们的全微分为
d x = ∑ i = 1 3 ∂ X ∂ u i d u i d y = ∑ i = 1 3 ∂ Y ∂ u i d u i d z = ∑ i = 1 3 ∂ Z ∂ u i d u i \begin{align} dx=\sum_{i=1}^{3}\frac{\partial X}{\partial u_{i}}du_{i}\\ dy=\sum_{i=1}^{3}\frac{\partial Y}{\partial u_{i}}du_{i}\\ dz=\sum_{i=1}^{3}\frac{\partial Z}{\partial u_{i}}du_{i} \end{align} dx=i=13uiXduidy=i=13uiYduidz=i=13uiZdui
我们知道,直角坐标系下的微分弧长为
d l = ( d x ) 2 + ( d y ) 2 + ( d z ) 2 \begin{equation} dl=\sqrt{\left(dx\right)^2+\left(dy\right)^2+\left(dz\right)^2} \end{equation} dl=(dx)2+(dy)2+(dz)2
将(2)~(4)式代入(5)式,得
d l = ∑ i = 1 3 ( ∂ X ∂ u i ) 2 + ( ∂ Y ∂ u i ) 2 + ( ∂ Z ∂ u i ) 2 d u i \begin{equation} dl=\sum_{i=1}^3\sqrt{\left(\frac{\partial X}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Y}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Z}{\partial u_{i}}\right)^{2}}du_i \end{equation} dl=i=13(uiX)2+(uiY)2+(uiZ)2 dui

H i = ( ∂ X ∂ u i ) 2 + ( ∂ Y ∂ u i ) 2 + ( ∂ Z ∂ u i ) 2 \begin{equation} H_{i}=\sqrt{\left(\frac{\partial X}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Y}{\partial u_{i}}\right)^{2}+\left(\frac{\partial Z}{\partial u_{i}}\right)^{2}} \end{equation} Hi=(uiX)2+(uiY)2+(uiZ)2
H i ( i = 1 , 2 , 3 ) H_i(i=1,2,3) Hii=1,2,3称为拉梅系数。
正交坐标系微元六面体

微元体的边长
d l 1 = ( d x ) 2 + ( d y ) 2 + ( d z ) 2 \begin{equation} dl_1=\sqrt{(dx)^2+(dy)^2+(dz)^2} \end{equation} dl1=(dx)2+(dy)2+(dz)2
由于边长 l 1 l_1 l1 u 1 u_1 u1坐标轴上,只有坐标 u 1 u_1 u1有变化, d u 2 = d u 3 = 0 du_2=du_3=0 du2=du3=0
d x = ∑ i = 1 3 ∂ X ∂ u i d u i = ∂ X ∂ u 1 d u 1 \begin{equation} dx=\sum_{i=1}^{3}\frac{\partial X}{\partial u_{i}}du_{i}=\frac{\partial X}{\partial u_{1}}du_{1} \end{equation} dx=i=13uiXdui=u1Xdu1
同理,
d y = ∂ Y ∂ u 1 d u 1 d z = ∂ Z ∂ u 1 d u 1 \begin{align} dy=\frac{\partial Y}{\partial u_{1}}du_{1}\\ dz=\frac{\partial Z}{\partial u_1}du_1 \end{align} dy=u1Ydu1dz=u1Zdu1
将(9)~(11)式代入(8)式中,
d l 1 = ( ∂ X ∂ u 1 ) 2 + ( ∂ Y ∂ u 1 ) 2 + ( ∂ Z ∂ u 1 ) 2 ⋅ d u 1 = H 1 ⋅ d u 1 \begin{equation} dl_{1}=\sqrt{(\frac{\partial X}{\partial u_{1}})^{2}+(\frac{\partial Y}{\partial u_{1}})^{2}+(\frac{\partial Z}{\partial u_{1}})^{2}}\cdot du_{1}=H_1\cdot du_{1} \end{equation} dl1=(u1X)2+(u1Y)2+(u1Z)2 du1=H1du1
同理,
d l 2 = ( ∂ X ∂ u 2 ) 2 + ( ∂ Y ∂ u 2 ) 2 + ( ∂ Z ∂ u 2 ) 2 ⋅ d u 2 = H 2 ⋅ d u 2 d l 3 = ( ∂ X ∂ u 3 ) 2 + ( ∂ Y ∂ u 3 ) 2 + ( ∂ Z ∂ u 3 ) 2 ⋅ d u 3 = H 3 ⋅ d u 3 \begin{align} dl_{2}=\sqrt{(\frac{\partial X}{\partial u_{2}})^{2}+(\frac{\partial Y}{\partial u_{2}})^{2}+(\frac{\partial Z}{\partial u_{2}})^{2}}\cdot du_{2}=H_2\cdot du_{2}\\ dl_{3}=\sqrt{(\frac{\partial X}{\partial u_{3}})^{2}+(\frac{\partial Y}{\partial u_{3}})^{2}+(\frac{\partial Z}{\partial u_{3}})^{2}}\cdot du_{3}=H_3\cdot du_{3} \end{align} dl2=(u2X)2+(u2Y)2+(u2Z)2 du2=H2du2dl3=(u3X)2+(u3Y)2+(u3Z)2 du3=H3du3

  • 23
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
由于题目中没有给出岩石的尺寸和形状,因此在求解过程中需要假设岩石为无限大的均匀介质。 首先,根据高斯光束的定义可以得到其强度分布函数: $$ I(x,y,z) = I_0 \exp \left[-\frac{2(x^2+y^2)}{w_0^2}\right] $$ 其中,$I_0$为光束中心的强度,$w_0$为光束半径。由于高斯光束在传播过程中会发生自聚焦,因此光束在岩石内部的强度分布函数也会发生改变。为了考虑这个因素,可以采用传输矩阵法计算光束在岩石内部的传播过程。具体来说,可以将岩石划分成若干个平行于x轴的薄层,每一层的厚度为$\Delta z$,在每一层中计算光束的传输矩阵$M$,然后逐层计算光束的强度分布函数。传输矩阵的计算公式为: $$ M = \begin{bmatrix} 1 & \Delta z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f}\Delta z & 1 \end{bmatrix} \begin{bmatrix} 1 & \Delta z \\ 0 & 1 \end{bmatrix} $$ 其中,$f$为光束的焦距。在计算传输矩阵时,可以采用近似公式: $$ M \approx \begin{bmatrix} 1-\frac{\Delta z}{f} & \Delta z \\ -\frac{1}{f}\Delta z & 1-\frac{\Delta z}{f} \end{bmatrix} $$ 接下来,可以根据光束的强度分布函数计算岩石中的吸收能量密度$Q$: $$ Q(x,y,z) = \eta I(x,y,z) $$ 其中,$\eta$为岩石的光吸收率。由于高斯光束的强度分布函数具有轴对称性,因此可以将岩石的吸收能量密度简化为一维问题: $$ q(x,z) = \int_{-\infty}^{+\infty} Q(x,y,z) dy = 2\eta I_0 e^{-\frac{2x^2}{w_0^2}} $$ 由于岩石是均匀介质,因此其热传导方程可以写为: $$ \frac{\partial T}{\partial t} = \frac{K}{\rho C} \nabla^2 T + \frac{Q}{\rho C} $$ 其中,$T$为岩石的温度,$\rho$为岩石的密度,$C$为岩石的比热容,$K$为岩石的热传导系数。由于岩石是无限大的均匀介质,因此可以将热传导方程简化为一维问题: $$ \frac{\partial T}{\partial t} = \frac{K}{\rho C} \frac{\partial^2 T}{\partial x^2} + \frac{q(x,t)}{\rho C} $$ 在数值求解过程中,可以采用有限差分法对上式进行离散化。将时间和空间分别离散为$t_n=n\Delta t$和$x_i=i\Delta x$,则上式可以写为: $$ \frac{T_{i,n+1}-T_{i,n}}{\Delta t} = \frac{K}{\rho C} \frac{T_{i+1,n}-2T_{i,n}+T_{i-1,n}}{\Delta x^2} + \frac{q_{i,n}}{\rho C} $$ 将上式变形,可以得到关于$T_{i,n+1}$的迭代公式: $$ T_{i,n+1} = T_{i,n} + \frac{K\Delta t}{\rho C\Delta x^2} (T_{i+1,n}-2T_{i,n}+T_{i-1,n}) + \frac{\Delta t}{\rho C} q_{i,n} $$ 上式中的$q_{i,n}$可以根据前面计算的吸收能量密度$q(x,z)$和传输矩阵$M$得到。具体来说,可以先计算光束在岩石中的传输矩阵$M(z)$,然后利用传输矩阵将光束的强度分布函数转化到每一层的位置上,最后计算吸收能量密度$q(x,z)$。 在求解温度场之后,可以根据热位移平衡方程求解应力场。热位移平衡方程可以写为: $$ \rho \frac{\partial^2 u}{\partial t^2} = \nabla \cdot \sigma $$ 其中,$u$为岩石的位移场,$\sigma$为应力张量。由于岩石的形变很小,因此可以采用线弹性理论来计算应力张量: $$ \sigma_{ij} = \lambda \delta_{ij} \epsilon_{kk} + 2\mu \epsilon_{ij} $$ 其中,$\lambda$和$\mu$为岩石的常数,$\delta_{ij}$为Kronecker delta符号,$\epsilon_{ij}$为应变张量。应变张量可以根据位移场求解得到: $$ \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right) $$ 将上述公式代入热位移平衡方程,可以得到关于$u_{i,n+1}$的迭代公式: $$ u_{i,n+1} = 2u_{i,n} - u_{i,n-1} + \frac{\Delta t^2}{\rho} \left(\frac{\sigma_{i+1/2,n}-\sigma_{i-1/2,n}}{\Delta x}\right) $$ 其中,$\sigma_{i+1/2,n}$和$\sigma_{i-1/2,n}$可以根据前面计算的应变张量和岩石的材料参数求解得到。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值