版权声明:本文为博主原创文章,https://blog.csdn.net/kalilili/article/details/42177279
针对这里提及的四个集合运算必须特别注意:
1、第一个算法需保证第一集合和第二集合有序,并从小到大排序,内部使用默认“<”操作符比较元素大小;
2、第二个算法需保证第一集合和第二集合有序,排序方式参照Compare确定,内部使用Compare比较元素大小。
1 -- set_intersection(交集)
-
template <
class InputIterator1, class InputIterator2, class OutputIterator>
-
OutputIterator
set_intersection(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
InputIterator2
last2,
-
OutputIterator
result);
-
-
template <
class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
-
OutputIterator
set_intersection(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
InputIterator2
last2,
-
OutputIterator
result,
Compare
comp);
该函数用于求两个集合的交集,结果集合中包含所有同时属于第一个集合和第二个集合的元素。例如:集合{1,2,3,7,9}和{3,4,5,7}的交集为{3,7}。
函数返回值:结果集合的结束位置的back_insert_iterator(和普通的迭代器不样)。
参数:
(第一个集合的开始位置,第一个集合的结束位置,第二个参数的开始位置,第二个参数的结束位置,结果集合的插入迭代器(inserter(result, result.begin())))
对于第二个算法,Compare指定用于比较元素大小的仿函数。
2 -- set_union(并集)
-
template <
class InputIterator1, class InputIterator2, class OutputIterator>
-
OutputIterator
set_union(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
InputIterator2
last2,
-
OutputIterator
result);
-
-
template <
class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
-
OutputIterator
set_union(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
InputIterator2
last2,
-
OutputIterator
result,
Compare
comp);
该函数用于求两个集合的交集,结果集合中包含所有同时属于第一个集合和第二个集合的元素。例如:集合{1,2,3,7,9}和{3,4,5,7}的并集为{1,2,3,4,5,7}。
3 -- set_difference(差集)
-
template <
class InputIterator1, class InputIterator2, class OutputIterator>
-
OutputIterator
set_difference(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
InputIterator2
last2,
-
OutputIterator
result);
-
-
template <
class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
-
OutputIterator
set_difference(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
InputIterator2
last2,
-
OutputIterator
result,
Compare
comp);
-
该函数用于求两个集合的差集,结果集合中包含所有属于第一个集合但不属于第二个集合的元素。例如:集合{
1,
2,
3,
7,
9}和{
3,
4,
5,
7}的差集为{
1,
2,
9}。
该函数用于求两个集合的差集,结果集合中包含所有属于第一个集合但不属于第二个集合的元素。例如:集合{1,2,3,7,9}和{3,4,5,7}的差集为{1,2,9}。
4 -- set_symeetric_difference(对称差集)
-
template<
class InputIterator1, class InputIterator2, class OutputIterator>
-
OutputIterator
set_symmetric_difference(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
InputIterator2
last2,
-
OutputIterator
result);
-
-
template<
class InputIterator1, class InputIterator2, class OutputIterator, class Compare>
-
OutputIterator
set_symmetric_difference(
InputIterator1
first1,
InputIterator1
last1,
-
InputIterator2
first2,
-
InputIterator2
last2,
-
OutputIterator
result,
Compare
comp);
数学上,两个集合的对称差集是只属于其中一个集合,而不属于另一个集合的元素组成的集合。也就是说对称差集是去除同时出现在两个集合中的元素后,两集合其他元素组成的集合。例如:集合{1,2,3,7,9}和{3,4,5,7}的对称差为{1,2,4,5,9}。集合论中的这个运算相当于布尔逻辑中的异或运算。集合A和B的对称差通常表示为AΔB。
应用举例(以并集为例):
第一类--两个数组求并:
-
// set_union example
-
#include <iostream>
-
#include <algorithm>
-
#include <vector>
-
using
namespace
std;
-
-
int main () {
-
int first[] = {
5,
10,
15,
20,
25};
-
int second[] = {
50,
40,
30,
20,
10};
-
vector<
int> v;
// 也可以用set<int> // 0 0 0 0 0 0 0 0 0 0
-
vector<
int>::iterator it;
-
-
sort (first,first+
5);
// 5 10 15 20 25
-
sort (second,second+
5);
// 10 20 30 40 50
-
-
set_union (first, first+
5, second, second+
5, inserter(v, v.begin()));
-
// 5 10 15 20 25 30 40 50 0 0
-
for(
vector<
int>::iterator it=v.begin();it!=v.end();it++)
-
cout<<*it<<
" ";
-
return
0;
-
}
第二类两个set求并:
-
#include <set>
-
#include <iterator>
-
#include <iostream>
-
#include <algorithm>
-
using
namespace
std;
-
-
-
int main(void)
-
{
-
set<
int> a,b,c;
//c也可以定义成vector
-
a.insert(
1);
-
a.insert(
6);
-
a.insert(
6);
-
b.insert(
2);
-
b.insert(
6);
-
b.insert(
9);
-
-
-
//最后一个参数若使用c.begin()会产生编译错误assignment of read-only localtion.
-
-
-
set_union(a.begin(), a.end(), b.begin(), b.end(), inserter(c, c.begin()));
-
for(
set<
int>::iterator it=c.begin();it!=c.end();it++)
-
cout<<*it<<
" ";
-
-
-
return
0;
-
}
第三类--两个vector之间求并:
-
#include <vector>
-
#include <iterator>
-
#include <iostream>
-
#include <algorithm>
-
using
namespace
std;
-
-
int main()
-
{
-
vector<
int> a,b,c;
-
for(
int e=
0;e<
10;e++)
-
{
-
a.push_back(e);
-
b.push_back(e+
5);
-
}
-
//最后一个参数若使用c.begin(),运行时会出错“Segmentation fault (core dumped)”.
-
set_union(a.begin(),a.end(),b.begin(),b.end(),inserter(c, c.begin()));
-
for(
vector<
int>::iterator it=c.begin();it!=c.end();it++)
-
cout<<*it<<
" ";
-
return
0;
-
}
注意事项: 函数参数的最后一个参数是插入迭代器,是因为这个函数内部有对结果集合的插入过程,必须用到插入函数,若不需要插入就用普通迭代器即可,就提前就把结果集合的内存空间扩大。
比如:
-
#include <vector>
-
#include <iterator>
-
#include <iostream>
-
#include <algorithm>
-
using
namespace
std;
-
-
int main()
-
{
-
vector<
int> a,b,c(
20);
//初始化c中有20个0
-
for(
int e=
0;e<
10;e++)
-
{
-
a.push_back(e);
-
b.push_back(e+
5);
-
}
-
//最后一个参数若使用c.begin(),运行时会出错“Segmentation fault (core dumped)”.
-
set_union(a.begin(),a.end(),b.begin(),b.end(),c.begin());
-
for(
vector<
int>::iterator it=c.begin();it!=c.end();it++)
-
cout<<*it<<
" ";
-
return
0;
-
}
若改为c(3)会出现3个元素,最后RE。
此时函数的最后一个参数是普通迭代器,函数的返回值也不再是插入迭代器,也变成了普通迭代器(指向结果集合的最后一个插入元素(非0的))
比如:
-
#include <iostream>
-
#include <algorithm>
-
#include <vector>
-
using
namespace
std;
-
-
int main () {
-
int first[] = {
5,
10,
15,
20,
25};
-
int second[] = {
50,
40,
30,
20,
10};
-
vector<
int> v(
10);
// 0 0 0 0 0 0 0 0 0 0
-
vector<
int>::iterator it;
-
-
sort (first,first+
5);
// 5 10 15 20 25
-
sort (second,second+
5);
// 10 20 30 40 50
-
-
it=set_union (first, first+
5, second, second+
5,v.begin());
// 5 10 15 20 25 30 40 50 0 0
-
//如果v.begin()改成inserter(v, v.begin()),函数返回值是插入迭代器,就会出现编译错误,错误信息:
-
/*E:\Users\amdi\Desktop\zuoye.cpp|165|error: no match for 'operator=' (operand types are 'std::vector<int>::iterator { aka __gnu_cxx::__normal_iterator<int*, std::vector<int> >}' and 'std::insert_iterator<std::vector<int> >')| */
-
cout <<
"union has " <<
int(it - v.begin()) <<
" elements.\n";
-
return
0;
-
}
所以求结果集合的元素个数除了用result.size()以外,也可以用以上程序的方法,不过建议还是用插入迭代器,用result.size()毕竟用普通迭代器的问题范围小,而且不方便(我们可能不想去预知结果集合的大小)。