位姿测量
文章平均质量分 90
苏源流
从事计算机视觉和SLAM领域,2012年10月“全国大学生数学建模竞赛”二等奖(数学应用能),2011年攻读 自动化 专业,2015年攻读“模式识别与智能系统” 专业。现在主要工作内容无人驾驶方面的视觉定位与导航,能够提供整体的地下车库自动泊车定位解决方案,该方案也适用于工业园区泊车,物流机器人,园区巡视机器人,餐饮配送、服务机器人等。本人熟悉linux下ROS环境,掌握opencv中2/3的功能,掌握视觉SLAM中ORB_SLAM2,激光lidar的loam。熟悉摄像机,激光雷达,惯导IMU等传感器的使用与开发。主导和参与多个定位项目,欢迎交流。致力于推进技术的应用,技术改变生活。不做无脑人
展开
-
[深度学习]CenterNet/CenterTrack学习笔记
HRNet / HigherHRNet-Human-Pose-Estimation https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation 三项任务[应用] Main resultsObject Detection on COCO validationBackbone AP / FPS Flip AP / FPS Multi-scale AP / FPS Hourglass-104...原创 2020-12-09 17:45:54 · 2235 阅读 · 0 评论 -
[深度学习]单目视频中运动3D目标检测_单目深度估计(5)
基于视频(不使用激光雷达)的3D目标检测,利用视频中目标的运动信息,性能达到SOTA。Kinematic3DObject Detection in Monocular Video作者 |Garrick Brazil, Gerard Pons-Moll, Xiaoming Liu, Bernt Schiele单位 |密歇根州立大学;萨尔大学论文 |https://arxiv.org/abs/2007.09548代码 |https://github.com/garrickbrazil/...翻译 2020-12-09 17:44:08 · 831 阅读 · 0 评论 -
[学习SLAM]欧拉角,旋转矩阵,旋转向量和四元数[opencv(C++,python),matlab,eigen]转换
[学习opencv]基于OpenCV的四元数、旋转矩阵和欧拉角互相转换【学习SLAM】’Matlab ——旋转矩阵,旋转向量,四元数,欧拉角之间的转换[学习SLAM]Eigen库使用教程之旋转矩阵,旋转向量和四元数的初始化和相互转换的实现 (ch3)...原创 2020-08-17 15:26:10 · 987 阅读 · 0 评论 -
[自动驾驶]带传感器融合的自适应巡航控制
本文链接: https ://blog.csdn.net/KYJL888/article/details/102895481带传感器融合的自适应巡航控制本示例使用:自动驾驶工具箱 嵌入式编码器 模型预测控制工具箱 Simulink控制设计 Simulink开放式此示例显示了如何使用传感器融合为在弯路上行驶的车辆实现基于传感器融合的汽车自适应巡航控制器。在此示例中,您:...翻译 2019-11-05 09:53:54 · 4585 阅读 · 3 评论 -
【计算机视觉】 相机姿态估计之标记检测-检测ChArUco角点3
ArUco标记和板非常有用因为他们的快速检测和多功能性。 然而,ArUco标记的问题之一是,角落的位置的准确性不是太高,即使应用亚像素细分。相反,棋盘模式的角落可以更准确地提炼因为每个角落周围是两个黑色方块。 然而,找到一个棋盘模式不像找到一个通用的ArUco板:它必须是完全可见,遮挡不允许。翻译 2017-06-02 16:38:10 · 7841 阅读 · 4 评论 -
【计算机视觉】 相机姿态估计之标记检测-检测ArUco板2
ArUco板是一组标记,就像一个标志,它提供了一个单一的姿势相机。最受欢迎的板是一个标记在同一平面上,因为它可以很容易地印刷:然而,板并不局限于这种安排,可以代表任何2 d或3 d布局。板的区别和一组独立的标记,标记之间的相对位置板是已知的先验。 这允许的所有标记可用于估计相机的姿势对整个板。当你使用一组独立的标志,你可以估计每个单独标记的姿势,因为你不知道在环境中相对位置的标记。使用板的主要好处是:· 姿势估计更多功能。 只有一些标记进行姿态估计是必要的。 因此,构成可以计算出即使在遮挡或部分翻译 2017-06-02 16:00:15 · 5185 阅读 · 0 评论 -
【计算机视觉】 相机姿态估计之标记检测-ArUco标记检测1
姿态估计是非常重要的在许多计算机视觉应用程序:机器人导航、增强现实,和许多更多。 这个过程是基于找到对应点之间在现实环境和他们的2 d图像投影。 这通常是一个困难的一步,因此通常使用合成或基准标记使它更容易。最受欢迎的方法是使用二进制广场基准标记。 这些标记的主要好处是一个标记提供了足够的通讯(四角)获得相机的姿势。 同时,内部二进制编纂使他们特别健壮,允许应用错误检测和校正技术的可能性。翻译 2017-06-02 16:03:44 · 17074 阅读 · 2 评论 -
【计算机视觉】 相机姿态估计之标记检测-ArUco钻石标记的检测4
ChArUco标识板和钻石标记,检测是基于前面发现ArUco标记。 ChArUco的情况下,使用标记选择通过直接看他们的标识符。 这意味着如果一个标记(包括在标识板)上发现的一个形象,它会自动认为属于标识板。 此外,如果找到标志板图像中不止一次,它将产生歧义,因为系统无法知道哪一个应该用于标识板。另一方面,钻石标记的检测不是基于标识符。 相反,他们检测是基于相对位置的标记。 因此,标记标识符可以重复相同的钻石或在不同的钻石,他们可以同时检测到没有歧义。 然而,由于发现标记的复杂性,基于他们的相对位置,钻石翻译 2017-06-04 10:54:31 · 3345 阅读 · 0 评论 -
【计算机视觉】 相机姿态估计之标记检测-相机标定ArUco和ChArUco 5
相机标定ArUco和ChArUco 原文来源 opencv http://docs.opencv.org/master/da/d13/tutorial_aruco_calibration.htmlArUco模块也可以用来相机标定。 相机标定是获得相机固有参数和失真系数。 这个参数保持不变,除非相机光学修改,因此相机相机标定只需要做一次。相机校正通常是执行使用Op翻译 2017-06-04 11:27:42 · 10046 阅读 · 0 评论 -
【视觉-单目三维重建-理论篇】单目视觉三维重建----论文调研1
几种方法调研结果1 非合作航天器位姿在轨测量方法的研究基于Rodrigues参数的目标相对状态确定算法(PR),并结合卡尔曼滤波,建立基于Rodrigues参数的扩展卡尔曼相对状态估计算法(PREKF)模型,对P4P的求解结果做进一步滤波处理,通过仿真实验对算法进行有效性分析,证明了PR算法与PREKF算法能够很好地解决Rodrigues参数的奇异问题,定位精度高,能够为在轨服务任务的原创 2017-07-03 15:19:34 · 13855 阅读 · 1 评论 -
【视觉-结构光三维重建-理论篇】结构光 三维重建----论文调研3
动态目标实时三维重建-结构光方案动态目标 三维重建Stripe boundary codes for real-time structured-light range scanning of moving objects我们提出了一种新的实时结构光扫描方法。在分析现有结构光技术的基本假设之后,我们基于编码投影条纹之间的边界,导出了一组新的照明模式。这些条纹边界码允许原创 2017-07-03 15:39:02 · 13724 阅读 · 0 评论 -
【视觉-三维视觉技术-理论篇】三维视觉技术----双目立体视觉,结构光等-战略总结0
122格雷码结构光3D视觉技术及其仿真 122格雷码结构光3D视觉技术及其仿真作者冀然摘要结构光三维测量技术是解决非接触三维测量问题的一个有效途径,它弥补了传统机器视觉以二维强度图像恢复三维景物的过程中损失了深度信息的缺陷,可实现对三维景物的完整描述。本文采用3dsmax和Matlab软件对灰度格雷码结构光三维测量系统进行计算机仿真研究。系统采用按时间编码方式,用投射器向被原创 2017-07-03 15:52:54 · 7589 阅读 · 0 评论 -
【计算机视觉】结构光——格雷码模式捕获教程1 (代码)
格雷码是一种具有反射特性和循环特性的单步自补码,其循环和单步特性消除了随机取数时出现重大错误的可能,其反射和自补特性使得对其进行求反操作也非常方便,所以,格雷码属于一种可靠性编码,是一种错误最小化的编码方式,因此格雷码在通信和测量技术中得到广泛应用。在本教程中,您将学习如何使用 GrayCodePattern 类:生成一个灰色的代码模式。项目格雷码的模式。捕获投射格雷码图案。重要的是要强调这一点 GrayCodePattern 类实际上实现了3中描述dunderworld算法 [73] 基于立体视原创 2017-07-03 16:14:49 · 10483 阅读 · 2 评论 -
【视觉-三维视觉技术-术语篇】三深度图像,点云数据
1 深度图像与点云数据深度图像(depth image)也被称为距离影像(range image),是指将从图像采集器到场景中各点的距离(深度)作为像素值的图像,它直接反映了景物可见表面的几何形状。深度图像经过坐标转换可以计算为点云数据,有规则及必要信息的点云数据也可以反算为深度图像数据。深度数据流所提供的图像帧中,每一个像素点代表的是在深度感应器的视野中,该特定的(x,原创 2017-07-03 16:23:16 · 2277 阅读 · 0 评论 -
【视觉-双目三维重建-理论篇】双目三维重建----论文调研2
双目视觉三维调研方法总结基于连续视差空间算法立体匹配算法基于连续视差空间算法采用欧式投影误差作为离群准则函数,建立RANSAC算法D-H方法几何法和解析法相结合的方法结合图像速度和视差信息,通过最小二乘方法对目标的相对运动状态进行了重构;将重构状态作为伪测量,引入线性化的相对运动模型,采用扩展卡尔曼滤波方法对连续多帧图像信息进行序贯处理以改善估计精度。原创 2017-07-03 15:28:36 · 3054 阅读 · 0 评论 -
【计算机视觉】 相机姿态估计之标记检测-Aruco模块常见问题解答 6
Aruco模块常见问题解答原文来源 opencv http://docs.opencv.org/master/d1/dcb/tutorial_aruco_faq.html这是一个编译的问题可能是有用的对于那些想要使用aruco模块。我只想标签一些对象,我应该使用什么?在这种情况下,您只需要单一ArUco标记。 您可以将一个或多个标记不同的id在每个对象的识别。翻译 2017-06-04 16:02:20 · 3960 阅读 · 0 评论 -
【计算机视觉】结构光——格雷码模式捕获教程2(经典论文)
基于结构光投影的运动物体高速实时三维测量方法研究_刘永久1 系统概述采用了一种基于高速视觉的投影和同步图像获取方法,将格雷码结构光编码方法应用于运动物体三维测量中,利用缩短帧间投影与图像获取时间方法减小同步误差。该方法可以突破了标准帧率的限制,实现运动物体的连续三维测量;基于物体运动信息估计方法,提出了一种“运动补偿算法”,利用物体本身的运动速度信息补偿同步误差。该算法原创 2017-07-03 16:18:27 · 3277 阅读 · 0 评论 -
【视觉-立体视觉】3D场景定位的一些资源(结构运动SFM+多目三维重建)
利用多张影像对小物体进行拍摄,进而进行三维重建,是计算机视觉中的重要问题之一。目前对此研究最全面的网站是:http://vision.middlebury.edu/mview/eval/ 目前最优秀的算法是Furukawa的PMVS2:http://www.di.ens.fr/pmvs/ 目前集成了最优秀的PMVS2的系统是WuChangchang的VisualSFM(含SiftGPU转载 2018-02-03 21:24:17 · 1819 阅读 · 0 评论 -
【视觉-立体视觉】全局匹配算法SGBM实现(含动态规划DP)详解
转载于http://www.opencv.org.cn/forum.php?mod=viewthread&tid=23854最近一直在学习SGBM算法,作为一种全局匹配算法,立体匹配的效果明显好于局部匹配算法,但是同时复杂度上也要远远大于局部匹配算法。算法主要是参考Stereo Processing by Semiglobal Matching and Mutual Infor转载 2018-02-03 21:22:48 · 3812 阅读 · 1 评论 -
【视觉-立体视觉】立体匹配几种算法性能比较
OpenCV三种立体匹配求视差图算法总结http://blog.csdn.net/mailang2008/article/details/5873883对OpenCV中涉及的三种立体匹配算法进行代码及各自优缺点总结:首先我们看一下BM算法:该算法代码:[cpp] view plain copyCvStere转载 2018-02-03 21:11:31 · 4173 阅读 · 0 评论 -
【视觉 SLAM 1】 视觉SLAM- RGBD 加 语义分割 1 (需要RGBD相机)
用深度学习技术分析RGBD数据,实现三维物体分类 视觉SLAM附言--前文涉及单目视觉,立体视觉。 全向(全景)视觉有待进一步介绍,介绍了标定知识。 RGBD视觉本文简要介绍0 前言 SLAMSLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localiz原创 2017-06-04 23:26:58 · 3479 阅读 · 0 评论 -
【matlab图像处理】生成棋方格,五子棋标定板(设置个数,尺寸,打印)
五子棋%% 五子棋clear all;clc;close allpha=0:pi/20:2*pi;%角度[0,2*pi]R=0.75;%半径x=R*cos(pha);y=R*sin(pha);n=5;for i=1:2:nfor j=1:2:nplot(i+x,j+y,'-');axis equalfill(i+x,j+y,'k');hold onen原创 2018-01-04 22:27:38 · 4446 阅读 · 0 评论 -
【计算机视觉】全景相机标定(MATLAB/opencv)
新的标定工具箱: 不需要先验知识的相机或镜像参数和我们只保持的灵活性 必须为每个校准网格选择4分(我们不 需要单独选择每个角落)。包含投影模型的函数(和雅克比)是可用的 在Matlab分别作为一个c++类相关的墨西哥人的功能。 类初始化在校准过程中生成的文件。 它使3 d点的投影也像点的提升 投影射线。这个新的“ 全景 标定工具箱 ”是一个完整的重写之前的版本。 它使用一些功能从“ 加州理工学院 标定工具箱“让Bouguet。这个页面给出的一个例子 校准会话。 这些图片 是 用于尝试工具箱。 你可以找原创 2017-06-04 16:56:22 · 11139 阅读 · 1 评论 -
【计算机视觉】从运动中恢复结构SfM 三维重建-输入重建
来源OpenCV 3.2.0-devhttp://docs.opencv.org/master/de/dfd/tutorial_sfm_import_reconstruction.html输入重建目标在本教程中,您将学习如何从一个给定的文件导入重建获得与打包机[1]:加载一个文件包含一组摄像机和3 d点。 使用即显示结果。结果下图显示了一个从洛杉矶重建 圣家堂 (BC...翻译 2017-06-02 12:43:43 · 5303 阅读 · 0 评论 -
【计算机视觉】摄像机标定 matlab toolbox_calib工具箱(单目标定和双目标定)
1 整体介绍相机标定为Matlab工具箱http://www.vision.caltech.edu/bouguetj/calib_doc/相机标定为Matlab工具箱 这是一个释放相机标定为Matlab工具箱 庐 完整的文档。 这个文档可能 也被用作一个教程自它原创 2017-05-06 22:58:20 · 8606 阅读 · 0 评论 -
【计算机视觉】matlab编程实现根据PNP求解位姿(有问题版)
clc;clear all;n=4;f=1000;pw3=zeros(n,3);%物体坐标3维pc2=zeros(n,2);%成像坐标2维pw3=[-1000,-100,0;1000,-100,0;-1000,100,0;-1000,100,0];pc2=[-67.8995,-56.3607;83.138,43.324;73.6759,61.1555;-75.8558,-39.52原创 2018-01-19 22:29:28 · 5378 阅读 · 2 评论 -
【视觉=立体视觉】立体匹配算法 StereoBM/StereoSGBM/StereoVar(OpenCV中源码分析)+SAD块匹配算法+GC算法+HH算法
OpenCV2源码:// OpenCVTest.cpp : 定义控制台应用程序的入口点。//#include "stdafx.h"#include /** stereo_match.cpp* calibration** Created by Victor Eruhimov on 1/18/10.* Copyright 2010 Argus Corp. All原创 2018-02-04 00:44:04 · 10714 阅读 · 10 评论 -
【计算机视觉】matlab calibration toolbox-Matlab标定工具箱使用
matlab calibration toolbox-Matlab标定工具箱使用1. 单目标定这个教程将带你完整地利用20到25张平面棋盘格图像进行相机标定。这个教程将让你学会如何使用所有工具箱的特征:载入图像、提取图像角点、运行标定引擎、显示结果、控制精度添加和删减图像、图像矫正、导出标定不同格式的数据...这个教程对于刚开始使用工具箱的人来说非常重要。首先下载Matlab标转载 2018-01-04 21:41:10 · 6359 阅读 · 1 评论 -
【视觉-立体视觉】双目测距与三维重建的OpenCV实现问题集锦
转载于邹宇华 http://blog.csdn.net/chenyusiyuan/article/list双目测距与三维重建的OpenCV实现问题集锦(一)图像获取与单目定标双目测距的基本原理如上图所示,双目测距主要是利用了目标点在左右两幅视图上成像的横向坐标直接存在的差异(即视差)与目标点到成像平面的距离Z存在着反比例的关系:Z=fT/d。“@scy转载 2018-02-03 21:11:09 · 2915 阅读 · 1 评论 -
【位姿测量】可能影响畸变参数的若干因素
1 镜头焦距与畸变镜头畸变实际上是光学透镜固有的透视失真的总称,这是透镜的固有有特性(凸透镜汇聚光线、凹透镜发散光线),所以无法消除,只能改善。一般情况下,定焦镜头焦距越长畸变越小,而焦距越短畸变就越大,这是一个普遍的规律。结论1:5mm镜头制作的凸透镜较凸,畸变相比长焦镜头就较大。2 标的板到相机的距离与畸变使用同一尺寸标定板,其到相机距离越大,标定的畸变误差越大 说明 在定板其到相机距离约3...原创 2018-05-25 11:17:19 · 3138 阅读 · 3 评论 -
Opencv249和Opencv3.0以上的 SolvePnp函数详解(附带程序、算例,应用点对分析)
https://blog.csdn.net/qq_30547073/article/details/78656795最近要做一个算法,用到了位姿估计。位姿估计的使用范围非常广泛。主要解决的问题为:在给出2D-3D若干点对以及相片的内参信息,如何求得相机中心在世界坐标系下的坐标以及相机的方向(旋转矩阵)。为此笔者做了大量研究,看了许多主流的文章,也是用了许多相关的函数库。主要有OpenMVG、Ope...转载 2018-07-05 14:48:44 · 2714 阅读 · 0 评论 -
Matlab 摄像机标定+畸变校正(新版本MATLAB)
博客转载自:http://blog.csdn.net/Loser__Wang/article/details/51811347本文目的在于记录如何使用MATLAB做摄像机标定,并通过opencv进行校正后的显示。首先关于校正的基本知识通过OpenCV官网的介绍即可简单了解:http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibra...转载 2018-07-13 00:44:46 · 38449 阅读 · 21 评论 -
利用matlab摄像机标定(老版本MATLAB)
利用matlab摄像机标定(1)输入图像“Image names”键Matlab的图形窗口显示出20幅靶标图像 (2) 提取角点“Extract grid corners”键。输入要进行角点提取的靶标图像的编号并回车分别在“wintx ([] = 5) =”和“winty ([] = 5) =”输入行中输入角点提取区域的窗口半宽m和半高n。显示角点提取区域的窗口尺寸(2n+1)x(2m+1),例如...转载 2018-07-13 00:47:04 · 1797 阅读 · 0 评论 -
摄像机标定的研究(MATLAB+OpenCV)
张正友摄像机标定的研究(MATLAB+OpenCV)http://www.cnblogs.com/Akagi201/archive/2012/05/19/2509184.html张正友 本科浙大,本来以为是中国人论文是中文呢,哎张正友的主页: http://research.microsoft.com/en-us/um/people/zhang/Calib/不过里面的棋盘格跟我的不一样啊,why?...转载 2018-07-13 01:00:52 · 799 阅读 · 0 评论 -
opencv自定义标定与matlab对比分析 (opecv非正方形标定板)
程序说明程序结构 CmakeLists.txt Cmake文件image_points.xml 图像2D点输入存放object_points.xml标识3D点输入存放注意事项calibration.cpp 主程序#define view_number 6 //图片数目 the number of a scene views#define view_points...原创 2018-07-24 15:33:25 · 1483 阅读 · 2 评论 -
Opencv 3.4 的solvepnp中的P3P与EPnp位姿估计算法解析
https://www.cnblogs.com/shang-slam/p/6481344.htmlEPnP在ORB-SLAM中主要用于Tracking线程中的重定位Relocalization模块,需要通过当前关键帧Bow与候选帧匹配上的3D地图点,迅速建立当前相机的初始姿态。PnP问题解决了已知世界参考系下地图点以及相机参考系下投影点位置时3D-2D相机位姿估计问题,不需要使用对极约束(...转载 2018-07-24 17:09:50 · 19718 阅读 · 3 评论 -
Matlab2015 双目相机自动标定
原文地址:http://www.cnblogs.com/chay/p/7551151.html一、 标定步骤1. 调出标定工具箱在命令行输入stereoCameraCalibrator,出现如下界面: 2. 勾选相应的选项然后将上面的“Skew”、“Tangential Distortion”以及“3 Coefficients”等选项选上,将“2 Coefficien...转载 2018-07-14 10:57:31 · 1006 阅读 · 0 评论 -
{畸变矫正}图像去畸变opencv各种方法与matlab各种方法-联合分析(一统江湖)
opencv 畸变矫正分析参考 https://docs.opencv.org/3.3.0/da/d54/group__imgproc__transform.html#ga69f2545a8b62a6b0fc2ee060dc30559d理论分析方法一undistort() 与matlab标定去畸变显示相同undistort()void cv::undistort ...原创 2018-07-14 15:00:15 · 27695 阅读 · 6 评论 -
【学习SLAM】KITTI数据集简介与使用
摘要:本文融合了Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite和Vision meets Robotics: The KITTI Dataset两篇论文的内容,主要介绍KITTI数据集概述,数据采集平台,数据集详细描述,评价准则以及具体使用案例。本文对KITTI数据集提供一个较为详细全面的介绍,重点关注利用...转载 2019-06-05 22:54:11 · 8499 阅读 · 1 评论 -
关于opencv通过initUndistortRectifyMap函数获取undistort后的对应点的方法
关于opencv通过initUndistortRectifyMap函数获取undistort后的对应点的方法https://blog.csdn.net/qq_20289205/article/details/78632542关于opencv通过initUndistortRectifyMap函数获取undistort后的对应点的方法 环境与简介 前置代码 Attempt...转载 2018-07-27 11:18:17 · 3189 阅读 · 1 评论