在实现TextMountain时,生成TCBP时需要计算文本区域点到四条边的距离,由于计算量大,所以最好是使用矩阵运算,提高运行效率。
基础讲解:由于需要使用到矩阵运算,最好采用向量的方法来进行表示。
为了讲述方便,我们设直线为x轴,用向量oq表示,对于点p,要计算p到直线oq的距离,我们可以任取直线上一点(这里取o)得到向量op,根据图中公式可以求得点到直线的垂足d到点p的向量dp(x,y),则点到直线的距离为sqrt(x*x+y*y)
编程实现
def get_pt_line_dis(pt, line, lpt):
'''
获取点到直线的距离
:param pt: 点坐标,[n,2]
:param line: 直线向量 [m,2]
:param lpt: 直线上的一个点 [m,2]
:return: 点与直线的距离以及直线到点的垂直单位向量
'''
EPS=10-9
pt = np.tile(pt[:, np.newaxis, :], (1, line.shape[0], 1)) #[n,m,2]
line = np.tile(line[np.newaxis, ...], (pt.shape[0], 1, 1)) #[n,m,2]
lpt = np.tile(lpt[np.newaxis, ...], (pt.shape[0], 1, 1)) #[n,m,2]
array_trans = pt - lpt #[n,m,2] array_trans[i,j]表示第i个点与第j条直线某端点组成的向量,图中op
array_temp = np.sum(array_trans * line, axis=2) / (line[..., 0] ** 2 + line[..., 1] ** 2) #[n,m]
array_temp = np.tile(array_temp[..., np.newaxis], (1, 1, 2)) #[n,m,2]
array_temp = array_temp * line #[n,m,2]计算图中od
v = array_trans - array_temp #图中dp [n,m,2] v[i,j]表示第i个点与第j条直线的垂直向量
distance = np.linalg.norm(v, axis=2)
v = v / (distance[..., np.newaxis] + EPS)
return distance, v
导读
在设计算法的时候经常需要用求一个点到另外两点组成的直线的距离
,计算点到直线的距离主要有两种方法:
- 通过点到直线的距离公式来进行计算
- 利用向量来计算点到直线的距离
求点A(a,b)到直线上两点 B(x1,y1)和 C(x2,y2)的距离,下面让我们来看看这两种方法的原理和代码实现
利用距离公式来计算距离
原理
- 求解直线方程
根据两点式直线方程:
x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y1} x2−x1x−x1=y2−y1y−y1
而我比较喜欢这样记, ( x , y ) (x,y) (x,y)是直线上的一个点,我们利用直线的斜率相等原则,通过两个点求斜率,就可以得到下面的公式:
y 2 − y 1 x 2 − x 1 = y − y 1 x − x 1 \frac{y_2-y_1}{x_2-x_1}=\frac{y-y_1}{x-x_1} x2−x1y2−y1=x−x1y−y1
其实下面的这个式子和上面的是等价的,接下来我们将两点式的直线方程,转换成 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0形式的直线方程,以便于我们后面计算距离
(y2−y1)∗(x−x1)=(y−y1)∗(x2−x1)(y2−y1)∗x+(x1−x2)∗y+x1∗(y1−y2)+y1∗(x2−x1)=0
所以
A=y2−y1B=x1−x2C=x1∗(y1−y2)+y1∗(x2−x1)
- 计算点到直线的距离
根据点到直线的距离公式:
A2+B2 ∣A∗x0+B∗y0+C∣
代码
import numpy as np
def get_distance_from_point_to_line(point, line_point1, line_point2):
#计算直线的三个参数
A = line_point2[1] - line_point1[1]
B = line_point1[0] - line_point2[0]
C = (line_point1[1] - line_point2[1]) * line_point1[0] + \
(line_point2[0] - line_point1[0]) * line_point1[1]
#根据点到直线的距离公式计算距离
distance = np.abs(A * point[0] + B * point[1] + C) / (np.sqrt(A**2 + B**2)+1e-6)
return distance
利用向量计算点到直线的距离
原理
我们将求点到直线的距离问题,转换为求三角形的高
。三角形的底BC的长度已知
,我们只需要求出三角形的面积即可。通过向量叉积
三角形的面积计算公式如下:
S Δ = 1 2 ∗ A B → × A C → S_{\Delta}=\frac{1}{2} * \overrightarrow{\boldsymbol{AB}} × \overrightarrow{\boldsymbol{AC}} SΔ=21∗AB ×AC
利用三角形面积相等原则,可以转换为
1 2 ∗ A B → × A C → = 1 2 ∗ ∣ B C ∣ ∗ h \frac{1}{2} * \overrightarrow{\boldsymbol{AB}} × \overrightarrow{\boldsymbol{AC}} =\frac{1}{2}*|BC|*h 21∗AB ×AC =21∗∣BC∣∗h
上式中的 h h h就是我们需要求解的点到直线的距离
代码
import numpy as np
def point_distance_line(point,line_point1,line_point2):
#计算向量
vec1 = line_point1 - point
vec2 = line_point2 - point
distance = np.abs(np.cross(vec1,vec2)) / np.linalg.norm(line_point1-line_point2)
return distance
point = np.array([5,2])
line_point1 = np.array([2,2])
line_point2 = np.array([3,3])
print(get_distance_from_point_to_line(point,line_point1,line_point2))
print(point_distance_line(point,line_point1,line_point2))