计算机视觉,图像处理
文章平均质量分 80
苏源流
从事计算机视觉和SLAM领域,2012年10月“全国大学生数学建模竞赛”二等奖(数学应用能),2011年攻读 自动化 专业,2015年攻读“模式识别与智能系统” 专业。现在主要工作内容无人驾驶方面的视觉定位与导航,能够提供整体的地下车库自动泊车定位解决方案,该方案也适用于工业园区泊车,物流机器人,园区巡视机器人,餐饮配送、服务机器人等。本人熟悉linux下ROS环境,掌握opencv中2/3的功能,掌握视觉SLAM中ORB_SLAM2,激光lidar的loam。熟悉摄像机,激光雷达,惯导IMU等传感器的使用与开发。主导和参与多个定位项目,欢迎交流。致力于推进技术的应用,技术改变生活。不做无脑人
展开
-
【智慧城市】交通路口摄像头转俯视图
原创 2021-04-19 15:18:20 · 599 阅读 · 1 评论 -
相机模型-鱼眼模型/鱼眼镜头标定基本原理及实现(2)
鱼眼相机模型 (fisheye camera model) 模型介绍 等距投影 等立体角投影 正交投影 体视投影 线性投影 Kannala-Brandt 模型 去畸变过程 投影过程 反投影过程 雅可比计算之前总结了一下针孔相机的模型,然后得到了比较积极的回复(其实是我到处求人关注的,虽然截至到目前才三个人),所以就再接再励,乘胜追击(也没得办法,夸下...原创 2021-05-31 19:16:26 · 13156 阅读 · 5 评论 -
相机模型-鱼眼模型/Omnidirectional Camera(1)
Omnidirectional CameraDavide ScaramuzzaDefinition 定义omnidirectional camera (from omni, meaning all) 广角相机: 在一个水平面有360度视野的相机,或视野能覆盖半个球或近似整个球的相机Background 背景知识大多数商业相机可以使用 pinhole 相机模型来描述,使用一个 perspective projection 来建模。但是存在一些高畸变成像设备如广角相机,它们不能使用传统小孔相机模型转载 2021-05-31 19:11:45 · 7302 阅读 · 1 评论 -
[深度学习]CenterNet/CenterTrack学习笔记
HRNet / HigherHRNet-Human-Pose-Estimation https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation 三项任务[应用] Main resultsObject Detection on COCO validationBackbone AP / FPS Flip AP / FPS Multi-scale AP / FPS Hourglass-104...原创 2020-12-09 17:45:54 · 2235 阅读 · 0 评论 -
[深度学习]单目视频中运动3D目标检测_单目深度估计(5)
基于视频(不使用激光雷达)的3D目标检测,利用视频中目标的运动信息,性能达到SOTA。Kinematic3DObject Detection in Monocular Video作者 |Garrick Brazil, Gerard Pons-Moll, Xiaoming Liu, Bernt Schiele单位 |密歇根州立大学;萨尔大学论文 |https://arxiv.org/abs/2007.09548代码 |https://github.com/garrickbrazil/...翻译 2020-12-09 17:44:08 · 831 阅读 · 0 评论 -
【opencv机器学习】SVM 初探
支持向量机(SVM)介绍支持向量机对线性不可分数据的处理支持向量机的参数含义及设置Opencv中的SVM参数优化原创 2017-04-10 16:10:47 · 1237 阅读 · 0 评论 -
[计算机视觉]ubuntu16.04安装opencv3.1.0+Qt5.6.0
ubuntu16.04安装opencv3.1.0+Qt5.6.0原创 2017-04-26 10:08:33 · 1090 阅读 · 0 评论 -
【计算机视觉】opencv靶标相机姿态解算2 根据四个特征点估计相机姿态 及 实时位姿估计与三维重建相机姿态
基本原理之如何解PNP问题根据四个特征点估计相机姿态OpenCV:solvePnP二次封装与性能测试实时位姿估计与三维重建相机姿态相机位姿估计0:基本原理之如何解PNP问题关键词:相机位姿估计 PNP问题求解用途:各种位姿估计文章类型:原理@Author:VShawn(singlex@转载 2017-05-06 22:12:44 · 15976 阅读 · 6 评论 -
【计算机视觉】opencv靶标相机姿态解算1之基本概念(空间旋转、旋转轴)
参考转载http://www.cnblogs.com/singlex/p/3DPointRotate.html基本概念1空间点绕轴旋转公式&程序空间点绕轴旋转公式&程序(C++)关键词:空间旋转、旋转轴用途:相机位姿估计、无人机位姿估计、3D游戏、3D建模文章类型:概念、公式总结(本文不带推倒过程,若想了解公式是如何推出来的请搜索文献),C++函数展示...转载 2017-05-06 21:56:51 · 3595 阅读 · 0 评论 -
【计算机视觉】opencv靶标相机姿态解算3 根据两幅图像的位姿估计结果求某点的世界坐标 (三维重建)
转载 根据两幅图像的位姿估计结果求某点的世界坐标相机位姿估计3:根据两幅图像的位姿估计结果求某点的世界坐标关键词:相机位姿估计,单目尺寸测量,环境探知用途:基于相机的环境测量,SLAM,单目尺寸测量文章类型:原理说明、Demo展示@Author:VShawn@Date:2016-11-28@Lab: CvL转载 2017-05-06 22:21:13 · 8634 阅读 · 0 评论 -
【计算机视觉】opencv姿态解算4 视觉导航 单目特征检测与实时位姿
转载 关于OpenCV的那些事——相机姿态更新上一节我们使用张正友相机标定法获得了相机内参,这一节我们使用 PnP (Perspective-n-Point)算法估计相机初始姿态并更新之。推荐3篇我学习的博客:【姿态估计】Pose estimation algorithm 之 Robust Planar Pose (RPP)algorithm,POSIT算法的原理--opencv原创 2017-05-06 22:37:30 · 5161 阅读 · 3 评论 -
【计算机视觉】opencv姿态解算5 OpenGL与OpenCV实现增强现实
转载 OpenGL与OpenCV实现增强现实最近在学习计算机视觉的相关知识,于是写了一个AR的小Demo。该程序通过OpenCV实现对Marker的识别和定位,然后通过OpenGL将虚拟物体叠加到摄像头图像下,实现增强现实。首先来看看我们使用的Marker:这是众多Marker中的一个,它们都被一圈的黑色边框所包围,边框之中是编码信息,白色代表1,黑色代表转载 2017-05-06 22:41:54 · 1726 阅读 · 0 评论 -
【计算机视觉】 opencv双目视觉 立体视觉 三维重建 之理论篇
转载 双目视觉三维重建 作者tiemaxiaosuhttp://blog.csdn.net/tiemaxiaosu/article/details/51734667一、三维重建概述 三维重建主要是研究如何从得到的匹配点中计算出相机的投影矩阵(如果是外部标定的话,就是求出相机的外部参数)以及如何计算出匹配点的三维坐标。 目前研究的进展与之还相差较远。研究转载 2017-05-07 21:28:42 · 5898 阅读 · 0 评论 -
【计算机视觉】 opencv双目视觉 立体视觉 三维重建
双目 MATLAB标定 ,查阅博主的【计算机视觉】摄像机标定 matlab toolbox_calib工具箱(单目标定和双目标定)1 基本原理 得到了立体标定参数之后,就可以把参数放入xml文件,然后用cvLoad读入OpenCV了。具体的方法可以参照Learning OpenCV第11章的例子,上面就是用cvSave保存标定结果,然后再用cvLoad把之前的标定结果读入矩阵的...转载 2017-05-07 21:41:02 · 24663 阅读 · 22 评论 -
【计算机视觉】opencv姿态解算7 四大坐标系,摄像机线性模型, 畸变模型
图像坐标系 成像平面坐标系 世界坐标系和摄像机坐标系 透视投影是最常用的成像模型,可以用针孔成像模型近似表示。其特点是所有来自场景的光线均通过一个投影中心,它对应于透镜的中心。经过投影中心且垂直于图像平面的直线称为投影轴或光轴,在实际应用中,由于摄像机镜头在制造中的缺陷以及在装配过程中的定位误差等原因,使用上述的线性模型不能够精确地描述成像几何关系,必须在其中加入非线性畸变参量。为了校正畸变误差,我们需要分析产生畸变的原因并对其在图像平面产生的效果建立数学模型。畸变一般包括径向畸变、离心畸变和薄棱转载 2017-05-07 20:49:16 · 5443 阅读 · 0 评论 -
【计算机视觉】 张正友标定法
转载http://blog.csdn.net/zzq060143/article/details/69396933?locationNum=8&fps=1致敬“张正友标定” 此处“张正友标定”又称“张氏标定”,是指张正友教授于1998年提出的单平面棋盘格的摄像机标定方法。张氏标定法已经作为工具箱或封装好的函数被广泛应用。张氏标定的原文为“A Flexible New转载 2017-05-07 22:43:23 · 820 阅读 · 0 评论 -
【计算机视觉】摄像机标定2 原理篇
转载 摄像机标定http://blog.csdn.net/tiemaxiaosu/article/details/51728961一、概述1、摄像机标定内容 摄像机标定实际上是要求出6个外参数、5个内参数,即旋转和平移矩阵 R 和 T 中的三个坐标系旋转角度和坐标系平移量 (fu = f/Sx, fv = f/Sy, u0, v0, u),以及各种畸转载 2017-05-07 20:58:52 · 8699 阅读 · 1 评论 -
【计算机视觉】 opencv双目视觉标定、匹配和测量 (附代码)
转http://blog.csdn.net/bcj296050240/article/details/52778741opencv双目视觉标定、匹配和测量 (附代码)双目视觉原理方面参照《学习Opencv》和大牛博客 http://blog.csdn.net/chenyusiyuan/article/details/5970799中16-19系列博客。本文主要记录我自己在双目视转载 2017-05-07 23:06:12 · 6382 阅读 · 1 评论 -
【计算机视觉】 完全基于opencv的双目景深与测距的实现
转载 Joe_quan的http://blog.csdn.net/hysteric314/article/details/50456570?locationNum=3&fps=1目录目录说明双目测距原理opencv实现双目测距的原理双目测距代码说明双目测距的代码和实现接下来1 说明怕以后忘了,现在总结一下前一段时间一直在弄的,有关双目转载 2017-05-07 23:18:58 · 5584 阅读 · 1 评论 -
【计算机视觉】 双目相机标定以及立体测距原理及OpenCV实现
转载 双目相机标定以及立体测距原理及OpenCV实现http://blog.csdn.net/dcrmg/article/details/52986522?locationNum=15&fps=1单目相机标定的目标是获取相机的内参和外参,内参(1/dx,1/dy,Cx,Cy,f)表征了相机的内部结构参数,外参是相机的旋转矩阵R和平移向量t。内参中dx和dy是相机单个感光单元芯片转载 2017-05-07 23:22:34 · 4154 阅读 · 2 评论 -
【计算机视觉】opencv姿态解算6 理论算法调研 PNP问题 5种算法
1 solvePnP里有三种解法:P3P, EPnP,迭代法(默认)(opencv3里多了DLS和UPnP解法)OpenCV提供了三种方法进行PNP计算,三种方法具体怎么计算的就请各位自己查询opencv documentation以及相关的论文了,我看了个大概然后结合自己实际的测试情况给出一个结论,不一定正确,仅供参考:方法名说明原创 2017-05-06 22:45:16 · 29017 阅读 · 6 评论 -
【opencv机器学习】支持向量机SVM的程序
1,生成随机的点,并按一定的空间分布将其归类2,创建SVM并利用随机点样本进行训练3,将整个空间按SVM分类结果进行划分,并显示支持向量SVM划分的意义到此,我们已经对SVM有一定的了解了。可是这有什么用呢?回到上一篇文章结果图:这个结果图的意义在于,他成功从二维划分了分类的区域。于是如果以后,有一个新的样本在绿色区域,那么我们就可以把他当成是绿色的点。由于这可以像更高维度推广,所以如果我们能对样品映射成高维度空间的点,当有足够多的样品时,我们同样可以找到一个高维度的超平面划分,使得同一类样品转载 2017-04-10 20:46:44 · 748 阅读 · 0 评论 -
【opencv机器学习】基于SVM和神经网络的车牌识别
将介绍创建自动车牌识别(Automatic Number Plate Recognition, ANPR)所需的步骤。对于不同的情形,实现自动车牌识别会用不同的方法和技术,例如,IR摄像机、固定汽车位置、光照条件等。本文着手构造一个用来检测汽车车牌ANPR的应用,该应用处理的图像使从汽车2-3米处拍摄的,拍摄环境的光线昏暗模糊,并且与地面不平行、车牌在图像中有轻微的扭曲。转载 2017-04-10 20:28:12 · 6826 阅读 · 1 评论 -
【计算机视觉】 相机姿态估计之标记检测-ArUco钻石标记的检测4
ChArUco标识板和钻石标记,检测是基于前面发现ArUco标记。 ChArUco的情况下,使用标记选择通过直接看他们的标识符。 这意味着如果一个标记(包括在标识板)上发现的一个形象,它会自动认为属于标识板。 此外,如果找到标志板图像中不止一次,它将产生歧义,因为系统无法知道哪一个应该用于标识板。另一方面,钻石标记的检测不是基于标识符。 相反,他们检测是基于相对位置的标记。 因此,标记标识符可以重复相同的钻石或在不同的钻石,他们可以同时检测到没有歧义。 然而,由于发现标记的复杂性,基于他们的相对位置,钻石翻译 2017-06-04 10:54:31 · 3345 阅读 · 0 评论 -
【计算机视觉】 相机姿态估计之标记检测-相机标定ArUco和ChArUco 5
相机标定ArUco和ChArUco 原文来源 opencv http://docs.opencv.org/master/da/d13/tutorial_aruco_calibration.htmlArUco模块也可以用来相机标定。 相机标定是获得相机固有参数和失真系数。 这个参数保持不变,除非相机光学修改,因此相机相机标定只需要做一次。相机校正通常是执行使用Op翻译 2017-06-04 11:27:42 · 10046 阅读 · 0 评论 -
【视觉-三维视觉技术-理论篇】三维视觉技术----双目立体视觉,结构光等-战略总结0
122格雷码结构光3D视觉技术及其仿真 122格雷码结构光3D视觉技术及其仿真作者冀然摘要结构光三维测量技术是解决非接触三维测量问题的一个有效途径,它弥补了传统机器视觉以二维强度图像恢复三维景物的过程中损失了深度信息的缺陷,可实现对三维景物的完整描述。本文采用3dsmax和Matlab软件对灰度格雷码结构光三维测量系统进行计算机仿真研究。系统采用按时间编码方式,用投射器向被原创 2017-07-03 15:52:54 · 7589 阅读 · 0 评论 -
【视觉-三维视觉技术-术语篇】三深度图像,点云数据
1 深度图像与点云数据深度图像(depth image)也被称为距离影像(range image),是指将从图像采集器到场景中各点的距离(深度)作为像素值的图像,它直接反映了景物可见表面的几何形状。深度图像经过坐标转换可以计算为点云数据,有规则及必要信息的点云数据也可以反算为深度图像数据。深度数据流所提供的图像帧中,每一个像素点代表的是在深度感应器的视野中,该特定的(x,原创 2017-07-03 16:23:16 · 2277 阅读 · 0 评论 -
【Linux 虚拟机】Windows 7下用VMware Workstation 10虚拟机安装 Ubuntu 14.04
繁體你好,游客 登录 注册 搜索Windows 7下用VMware Workstation 10虚拟机安装 Ubuntu 14.04[日期:2014-04-20]来源:Linux公社 作者:Linux[字体:大 中 小]转载 2017-07-03 21:09:13 · 1034 阅读 · 0 评论 -
【Linux 虚拟机】VMware虚拟机安装Ubuntu系统英文改中文的方法
繁體你好,游客 登录 注册 搜索VMware虚拟机安装Ubuntu系统英文改中文的方法我们已经在Windows 7下用VMware Workstation 10虚拟机安装 Ubunbu 14.04。 (本文更新http://www.linuxidc.com/Linux/2014-04/100474.htm)但是安装VM转载 2017-07-03 21:51:56 · 22256 阅读 · 2 评论 -
【Linux 虚拟机】关于Win7与虚拟机Linux互通ping的网络设置
虽然从WinXP到Win7一直都可以使用VMWARE虚拟机安装Linux系统,记得每次关于Windows与Linux网络设置的问题,都需要在baidu查找相关参考资料,多次折腾后才能实现,相同的工作每次都会花费不少时间和精力,最糟糕的是,隔一段时间后,之前成功实现互通设置的操作又会被遗忘的一干二净。所谓好的经验,虽然当时总以为自己已经针对设置步骤彻底弄明白了,并且看上去也确实不足为奇的简单,但是在转载 2017-07-04 10:41:54 · 764 阅读 · 0 评论 -
【Linux 虚拟机】关于如何设置虚拟机网络问题1
转摘:http://www.cnblogs.com/xiaochaohuashengmi/archive/2011/03/15/1985084.htmlVMWare提供了三种工作模式,它们是bridged(桥接模式)、NAT(网络地址转换模式)和host-only(主机模式)。要想在网络管理和维护中合理应用它们,你就应该先了解一下这三种工作模式。 1.bridged(桥接模式)转载 2017-07-04 10:48:12 · 691 阅读 · 0 评论 -
【Linux 虚拟机】关于如何设置虚拟机网络问题2
我们从安装VMware虚拟机到安装虚拟机操作系统都是基础操作,学到这里操作系统及基本设置都应该会了。如果还不太熟悉,建议重复看以上七章课程,从第八章,我们更深入的学习下VMware虚拟机的操作及应用,今天我们主要讲解的是:如何让虚拟机系统畅通无阻的上网工具/原料VMware虚拟机10.01版本或者其他版本,操作基本一样一个已经在VMw原创 2017-07-04 10:50:16 · 478 阅读 · 0 评论 -
【计算机视觉】从运动中恢复结构SfM-场景重建,三维重建[图像序列]
原3.2.0-dev http://docs.opencv.org/master/d4/d18/tutorial_sfm_scene_reconstruction.html目标在本教程中,您将学习如何使用重建api稀疏重建:加载和图像文件的路径。 libmv重建传递途径运行。 使用即显示结果。模块安装从运动中恢复结构SfM模块安装https://blog.csdn.ne...翻译 2017-06-02 12:10:12 · 10236 阅读 · 2 评论 -
【计算机视觉】从运动中恢复结构SfM模块安装
结构运动Structure From Motion,SFM模块安装来源 http://docs.opencv.org/master/db/db8/tutorial_sfm_installation.htmlOpenCV 3.2.0-dev依赖关系从运动模块结构取决于一些开源库。Eigen 3.2.2 或更高版本。 要求 GLog 0.3.1或更高版本。 要求 GFlags...翻译 2017-06-02 12:21:13 · 1692 阅读 · 0 评论 -
【计算机视觉】从运动中恢复结构SfM-摄像机运动估计,三维重建[2d点序列]
结构运动-摄像机运动估计来源OpenCV 3.3.0目标在本教程中,您将学习如何使用重建api的摄像机运动估计:加载文件与跟踪二维点,并建立容器的所有帧。 libmv重建传递途径运行。 使用即显示结果。从运动中恢复结构SfM模块安装使用情况和结果为了运行这个示例,我们需要指定的路径跟踪点文件,相机的焦距长度除了中心投影坐标(以像素为单位)。 你可以找到一个示例文件/...翻译 2017-06-02 12:35:31 · 3938 阅读 · 2 评论 -
【计算机视觉】 相机姿态估计之标记检测-Aruco模块常见问题解答 6
Aruco模块常见问题解答原文来源 opencv http://docs.opencv.org/master/d1/dcb/tutorial_aruco_faq.html这是一个编译的问题可能是有用的对于那些想要使用aruco模块。我只想标签一些对象,我应该使用什么?在这种情况下,您只需要单一ArUco标记。 您可以将一个或多个标记不同的id在每个对象的识别。翻译 2017-06-04 16:02:20 · 3960 阅读 · 0 评论 -
【视觉-立体视觉】3D场景定位的一些资源(结构运动SFM+多目三维重建)
利用多张影像对小物体进行拍摄,进而进行三维重建,是计算机视觉中的重要问题之一。目前对此研究最全面的网站是:http://vision.middlebury.edu/mview/eval/ 目前最优秀的算法是Furukawa的PMVS2:http://www.di.ens.fr/pmvs/ 目前集成了最优秀的PMVS2的系统是WuChangchang的VisualSFM(含SiftGPU转载 2018-02-03 21:24:17 · 1819 阅读 · 0 评论 -
【视觉 SLAM 1】 视觉SLAM- RGBD 加 语义分割 1 (需要RGBD相机)
用深度学习技术分析RGBD数据,实现三维物体分类 视觉SLAM附言--前文涉及单目视觉,立体视觉。 全向(全景)视觉有待进一步介绍,介绍了标定知识。 RGBD视觉本文简要介绍0 前言 SLAMSLAM (simultaneous localization and mapping),也称为CML (Concurrent Mapping and Localiz原创 2017-06-04 23:26:58 · 3479 阅读 · 0 评论 -
【计算机视觉】全景相机标定(MATLAB/opencv)
新的标定工具箱: 不需要先验知识的相机或镜像参数和我们只保持的灵活性 必须为每个校准网格选择4分(我们不 需要单独选择每个角落)。包含投影模型的函数(和雅克比)是可用的 在Matlab分别作为一个c++类相关的墨西哥人的功能。 类初始化在校准过程中生成的文件。 它使3 d点的投影也像点的提升 投影射线。这个新的“ 全景 标定工具箱 ”是一个完整的重写之前的版本。 它使用一些功能从“ 加州理工学院 标定工具箱“让Bouguet。这个页面给出的一个例子 校准会话。 这些图片 是 用于尝试工具箱。 你可以找原创 2017-06-04 16:56:22 · 11139 阅读 · 1 评论 -
【计算机视觉】从运动中恢复结构SfM 三维重建-输入重建
来源OpenCV 3.2.0-devhttp://docs.opencv.org/master/de/dfd/tutorial_sfm_import_reconstruction.html输入重建目标在本教程中,您将学习如何从一个给定的文件导入重建获得与打包机[1]:加载一个文件包含一组摄像机和3 d点。 使用即显示结果。结果下图显示了一个从洛杉矶重建 圣家堂 (BC...翻译 2017-06-02 12:43:43 · 5303 阅读 · 0 评论