【知识点】(二)极限

本文详细探讨了高等数学中的极限概念,包括函数极限和数列极限的求解方法,如多项式极限、不定式极限,以及夹逼定理和单调有界准则。同时,解释了极限存在性和洛必达法则的应用,为理解复杂函数行为提供了关键工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数极限求解

1. 多项式极限
  • 四则运算法则: l i m X limX limX l i m Y limY limY 均存在,则 l i m ( X ⊙ Y ) = l i m X ⊙ l i m Y lim(X⊙Y)=limX⊙limY lim(XY)=limXlimY,其中 ⊙ ⊙ 代表加减乘除符号
  • 因式分解

lim ⁡ x → 2 x 2 − 3 x + 2 x − 2 = lim ⁡ x → 2 ( x − 2 ) ( x − 1 ) x − 2 = lim ⁡ x → 2 ( x − 1 ) = 1 \lim_{x \to 2} \frac{x^2-3x+2}{x-2}=\lim_{x \to 2} \frac{(x-2)(x-1)}{x-2}=\lim_{x \to 2}(x-1)=1 x2limx2x23x+2=x2limx2(x2)(x1)=x2lim(x1)=1

  • 两个重要极限
    lim ⁡ x → ∞ ( a x + b x + c x ) 1 x = m a x ( a , b , c ) , lim ⁡ x → 0 ( a x + b x + c x 3 ) 1 x = a b c 3 \lim_{x \to \infin}(a^x+b^x+c^x)^\frac{1}{x}=max(a,b,c), \lim_{x \to 0}(\frac{a^x+b^x+c^x}{3})^\frac{1}{x} =\sqrt[3]{abc} xlim(ax+bx+cx)x1=max(a,b,c)x0lim(3ax+bx+cx)x1=3abc

x → ∞ x \to \infin x 时, ∀ n > 0 \forall n > 0 n>0,我们就有 s i n ( 任 意 ) < l n ( x ) < x n < e x sin(任意)<ln(x)<x^n<e^x sin()<ln(x)<xn<ex,即
lim ⁡ x → ∞ 左 右 = 0 \lim_{x\to ∞}\frac{左}{右}=0 xlim=0

2. 极限定义求极限
  • 绝对值: lim ⁡ x − > 0 − ∣ x ∣ x = − 1 , lim ⁡ x − > 0 + ∣ x ∣ x = 1 , D N E \lim_{x->0^-}\frac{|x|}{x}=-1,\lim_{x->0^+}\frac{|x|}{x}=1,DNE x>0limxx=1x>0+limxx=1DNE
  • e e e 相关:
    lim ⁡ x → + ∞ e x = ∞ , lim ⁡ x → − ∞ e x = 0 , D N E \lim_{x\to+\infin}e^x=\infin,\lim_{x\to-\infin}e^x=0,DNE x+limex=xlimex=0DNE
3. 不定式极限

α → 0 α\to0 α0 β → ∞ β\to\infin β,且 l i m α β = A , lim ⁡ ( 1 + α ) β = e α ⋅ β = e A limαβ=A,\lim(1+α)^β=e^{α·β}=e^A limαβ=Alim(1+α)β=eαβ=eA

麦克劳林展开式

  • s i n x = x − x 3 6 + o ( x 3 ) sinx= x - \frac{x^3}{6}+o(x^3) sinx=x6x3+o(x3)
  • a r c s i n x = x + x 3 6 + o ( x 3 ) arcsinx=x+\frac{x^3}{6}+o(x^3) arcsinx=x+6x3+o(x3)
  • t a n x = x + x 3 3 + o ( x 3 ) tanx=x+\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3)
  • a r c t a n x = x − x 3 3 + o ( x 3 ) arctanx=x-\frac{x^3}{3}+o(x^3) arctanx=x3x3+o(x3)
  • c o s x = 1 − x 2 2 + x 4 24 + o ( x 4 ) cosx= 1 - \frac{x^2}{2} + \frac{x^4}{24}+o(x^4) cosx=12x2+24x4+o(x4)
  • l n ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 4 ) ln(1+x)= x - \frac{x^2}{2} + \frac{x^3}{3}+o(x^4) ln(1+x)=x2x2+3x3+o(x4)
  • e x = 1 + x + x 2 2 + x 3 6 + o ( x 4 ) e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^4) ex=1+x+2x2+6x3+o(x4)
  • ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 x 2 + o ( x 2 ) ( a = ± 1 或 1 2 最 常 用 ) (1+x)^a=1+ax+\frac{a(a-1)}{2}x^2+o(x^2) (a=±1或\frac{1}{2}最常用) (1+x)a=1+ax+2a(a1)x2+o(x2)(a=±121)

等价无穷小

  • s i n x sinx sinx ~ a r c s i n x arcsinx arcsinx ~ t a n x tanx tanx ~ a r c t a n x arctanx arctanx ~ e x − 1 e^x-1 ex1 ~ l n ( 1 + x ) ln(1+x) ln(1+x) ~ x x x
  • t a n x − s i n x tanx - sinx tanxsinx ~ 1 2 x 3 \frac{1}{2}x^3 21x3 a x − 1 a^x-1 ax1 ~ x l n a xlna xlna

洛必达法则 l i m X = 0 limX=0 limX=0 l i m Y = 0 limY=0 limY=0 X X X Y Y Y去心邻域可导,且 l i m X ′ l i m Y ′ = A \frac{limX'}{limY'}=A limYlimX=A,则 l i m X l i m Y = l i m X ′ l i m Y ′ = A \frac{limX}{limY}=\frac{limX'}{limY'}=A limYlimX=limYlimX=A

数列极限求解

在这里插入图片描述
数列极限分为累加和及递推式两种形式,累加和适用于夹逼定理,递推式适用于单调有界准则。

1. 夹逼定理
  • 定理:如果函数 h ( x ) h(x) h(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x) 满足 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)≤f(x)≤h(x) g(x)f(x)h(x),且 lim ⁡ h ( x ) = lim ⁡ g ( x ) = L \lim h(x) = \lim g(x)=L limh(x)=limg(x)=L,那么 lim ⁡ f ( x ) \lim f(x) limf(x) 存在且 lim ⁡ f ( x ) = L \lim f(x)=L limf(x)=L
  • 累加和配定积分 lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) = ∫ 0 1 f ( x ) d x \lim_{n \to \infin} \frac{1}{n} \sum_{i=1}^nf(\frac{i}{n}) = \int_{0}^{1}f(x)dx nlimn1i=1nf(ni)=01f(x)dx
2. 单调有界

单调有界准则分为 单调递增有上界单调递减有下界,此处仅以 单调递增有上界为例:如果数列 x n {x_n} xn 单调递增且有上界 M M M,则极限 lim ⁡ x n \lim x_n limxn 存在且 lim ⁡ x n = M \lim x_n = M limxn=M

  • 归纳法证有上界 lim ⁡ x n = A , x 1 < A , 令 x k < A , 则 x k + 1 < A , 故 数 列 x n 有 上 界 A \lim x_n=A,x_1<A,令 x_k<A,则x_{k+1}<A,故数列 x_n 有上界A limxn=Ax1<Axk<Axk+1<AxnA
  • 归纳法证单调递增 x 1 < x 2 , 令 x k − 1 < x k , 则 x k < x k + 1 , 故 数 列 x n 单 调 递 增 x_1<x_2,令x_{k-1}<x_k,则 x_k<x_{k+1},故数列 x_n 单调递增 x1<x2xk1<xkxk<xk+1xn

N o t e Note Note: 单调有界准则只适用于数列,函数在极限处间断则极限不存在;有界但不单调数列未必有极限,例如 s i n ( x n ) sin(x_n) sin(xn)

极限存在性

基本初等函数的图像是一条连续光滑的曲线,但当函数某点 a a a 未定义时,若要探讨函数在该点的函数值就需要引入工具 — 极限

极限:描述了函数在一个未定义点 a a a 附近的行为,即当 x x x 接近于 a a a 时, f ( x ) f(x) f(x) 的值就会极度接近 L L L

如何描述接近的过程呢?
自然语言:只要 x x x 距离 a ( x ≠ a ) a(x ≠ a) a(x=a) 不超过 δ δ δ f ( x ) f(x) f(x) 的值距离 L L L 就不会超过 ε ε ε
ε−δ 语言: ∀ ε > 0 \forall ε > 0 ε>0 ∃ δ > 0 \exists δ>0 δ>0,当 0 < ∣ x − a ∣ < δ 0<|x-a| < δ 0<xa<δ 时, ∣ f ( x ) − L ∣ < ε |f(x)-L| < ε f(x)L<ε
在这里插入图片描述

1. 极限存在

函数极限 lim ⁡ x → x 0 f ( x ) = A \lim_{x \to x_0} f(x)=A limxx0f(x)=A

  • 定义: ∀ ϵ > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , 恒 有 ∣ f ( x ) − A ∣ < ϵ 成 立 \forall \epsilon >0,\exist \delta>0,当 0<|x-x_0|<\delta时,恒有 |f(x)-A|<\epsilon成立 ϵ>0δ>00<xx0<δf(x)A<ϵ
  • 左右极限: lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) \lim_{x \to x_0^-} f(x)=\lim_{x \to x_0^+} f(x) xx0limf(x)=xx0+limf(x)

数列极限 lim ⁡ n → ∞ x n = A \lim_{n \to \infin} x_n=A limnxn=A

  • 定义: ∀ ϵ > 0 , ∃ 正 整 数 N , 当 n > N 时 , 恒 有 ∣ x n − A ∣ < ϵ 成 立 \forall \epsilon >0,\exist 正整数N,当 n > N时,恒有 |x_n-A|<\epsilon成立 ϵ>0Nn>NxnA<ϵ
  • 海涅定理: 任 意 数 列 x n , x n → x 0 ( n → ∞ ) , 有 lim ⁡ n → ∞ f ( x n ) = A < = > lim ⁡ x → x 0 f ( x ) = A 任意数列 x_n,x_n\to x_0 (n \to \infin),有 \lim_{n \to \infin} f(x_n)=A<=>\lim_{x \to x_0}f(x)=A xnxnx0(n)limnf(xn)=A<=>limxx0f(x)=A
2. 极限不存在
  • 左右极限存在:
    在这里插入图片描述
    lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) \lim_{x \to x_0^-} f(x)≠\lim_{x \to x_0^+} f(x) xx0limf(x)=xx0+limf(x)
  • 左右极限不存在:
    在这里插入图片描述
    左 极 限 : lim ⁡ x → 0 − f ( x ) = − ∞ 左极限:\lim_{x \to 0^-} f(x)= -∞ x0limf(x)= 右 极 限 : lim ⁡ x → 0 + f ( x ) = + ∞ 右极限:\lim_{x \to 0^+} f(x)=+∞ x0+limf(x)=+
    在这里插入图片描述
    lim ⁡ x → 0 + f ( x ) D N E \lim_{x \to 0^+} f(x)DNE x0+limf(x)DNE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值