函数极限求解
1. 多项式极限
- 四则运算法则: l i m X limX limX 和 l i m Y limY limY 均存在,则 l i m ( X ⊙ Y ) = l i m X ⊙ l i m Y lim(X⊙Y)=limX⊙limY lim(X⊙Y)=limX⊙limY,其中 ⊙ ⊙ ⊙ 代表加减乘除符号
- 因式分解
lim x → 2 x 2 − 3 x + 2 x − 2 = lim x → 2 ( x − 2 ) ( x − 1 ) x − 2 = lim x → 2 ( x − 1 ) = 1 \lim_{x \to 2} \frac{x^2-3x+2}{x-2}=\lim_{x \to 2} \frac{(x-2)(x-1)}{x-2}=\lim_{x \to 2}(x-1)=1 x→2limx−2x2−3x+2=x→2limx−2(x−2)(x−1)=x→2lim(x−1)=1
- 两个重要极限
lim x → ∞ ( a x + b x + c x ) 1 x = m a x ( a , b , c ) , lim x → 0 ( a x + b x + c x 3 ) 1 x = a b c 3 \lim_{x \to \infin}(a^x+b^x+c^x)^\frac{1}{x}=max(a,b,c), \lim_{x \to 0}(\frac{a^x+b^x+c^x}{3})^\frac{1}{x} =\sqrt[3]{abc} x→∞lim(ax+bx+cx)x1=max(a,b,c),x→0lim(3ax+bx+cx)x1=3abc
当
x
→
∞
x \to \infin
x→∞ 时,
∀
n
>
0
\forall n > 0
∀n>0,我们就有
s
i
n
(
任
意
)
<
l
n
(
x
)
<
x
n
<
e
x
sin(任意)<ln(x)<x^n<e^x
sin(任意)<ln(x)<xn<ex,即
lim
x
→
∞
左
右
=
0
\lim_{x\to ∞}\frac{左}{右}=0
x→∞lim右左=0
2. 极限定义求极限
- 绝对值: lim x − > 0 − ∣ x ∣ x = − 1 , lim x − > 0 + ∣ x ∣ x = 1 , D N E \lim_{x->0^-}\frac{|x|}{x}=-1,\lim_{x->0^+}\frac{|x|}{x}=1,DNE x−>0−limx∣x∣=−1,x−>0+limx∣x∣=1,DNE
-
e
e
e 相关:
lim x → + ∞ e x = ∞ , lim x → − ∞ e x = 0 , D N E \lim_{x\to+\infin}e^x=\infin,\lim_{x\to-\infin}e^x=0,DNE x→+∞limex=∞,x→−∞limex=0,DNE
3. 不定式极限
若 α → 0 α\to0 α→0, β → ∞ β\to\infin β→∞,且 l i m α β = A , lim ( 1 + α ) β = e α ⋅ β = e A limαβ=A,\lim(1+α)^β=e^{α·β}=e^A limαβ=A,lim(1+α)β=eα⋅β=eA
麦克劳林展开式:
- s i n x = x − x 3 6 + o ( x 3 ) sinx= x - \frac{x^3}{6}+o(x^3) sinx=x−6x3+o(x3)
- a r c s i n x = x + x 3 6 + o ( x 3 ) arcsinx=x+\frac{x^3}{6}+o(x^3) arcsinx=x+6x3+o(x3)
- t a n x = x + x 3 3 + o ( x 3 ) tanx=x+\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3)
- a r c t a n x = x − x 3 3 + o ( x 3 ) arctanx=x-\frac{x^3}{3}+o(x^3) arctanx=x−3x3+o(x3)
- c o s x = 1 − x 2 2 + x 4 24 + o ( x 4 ) cosx= 1 - \frac{x^2}{2} + \frac{x^4}{24}+o(x^4) cosx=1−2x2+24x4+o(x4)
- l n ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 4 ) ln(1+x)= x - \frac{x^2}{2} + \frac{x^3}{3}+o(x^4) ln(1+x)=x−2x2+3x3+o(x4)
- e x = 1 + x + x 2 2 + x 3 6 + o ( x 4 ) e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^4) ex=1+x+2x2+6x3+o(x4)
- ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 x 2 + o ( x 2 ) ( a = ± 1 或 1 2 最 常 用 ) (1+x)^a=1+ax+\frac{a(a-1)}{2}x^2+o(x^2) (a=±1或\frac{1}{2}最常用) (1+x)a=1+ax+2a(a−1)x2+o(x2)(a=±1或21最常用)
等价无穷小:
- s i n x sinx sinx ~ a r c s i n x arcsinx arcsinx ~ t a n x tanx tanx ~ a r c t a n x arctanx arctanx ~ e x − 1 e^x-1 ex−1 ~ l n ( 1 + x ) ln(1+x) ln(1+x) ~ x x x
- t a n x − s i n x tanx - sinx tanx−sinx ~ 1 2 x 3 \frac{1}{2}x^3 21x3、 a x − 1 a^x-1 ax−1 ~ x l n a xlna xlna
洛必达法则: l i m X = 0 limX=0 limX=0 和 l i m Y = 0 limY=0 limY=0, X X X、 Y Y Y去心邻域可导,且 l i m X ′ l i m Y ′ = A \frac{limX'}{limY'}=A limY′limX′=A,则 l i m X l i m Y = l i m X ′ l i m Y ′ = A \frac{limX}{limY}=\frac{limX'}{limY'}=A limYlimX=limY′limX′=A
数列极限求解
数列极限分为累加和及递推式两种形式,累加和适用于夹逼定理,递推式适用于单调有界准则。
1. 夹逼定理
- 定理:如果函数 h ( x ) h(x) h(x), f ( x ) f(x) f(x), g ( x ) g(x) g(x) 满足 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)≤f(x)≤h(x) g(x)≤f(x)≤h(x),且 lim h ( x ) = lim g ( x ) = L \lim h(x) = \lim g(x)=L limh(x)=limg(x)=L,那么 lim f ( x ) \lim f(x) limf(x) 存在且 lim f ( x ) = L \lim f(x)=L limf(x)=L
- 累加和配定积分: lim n → ∞ 1 n ∑ i = 1 n f ( i n ) = ∫ 0 1 f ( x ) d x \lim_{n \to \infin} \frac{1}{n} \sum_{i=1}^nf(\frac{i}{n}) = \int_{0}^{1}f(x)dx n→∞limn1i=1∑nf(ni)=∫01f(x)dx
2. 单调有界
单调有界准则分为 单调递增有上界 和 单调递减有下界,此处仅以 单调递增有上界为例:如果数列 x n {x_n} xn 单调递增且有上界 M M M,则极限 lim x n \lim x_n limxn 存在且 lim x n = M \lim x_n = M limxn=M。
- 归纳法证有上界: lim x n = A , x 1 < A , 令 x k < A , 则 x k + 1 < A , 故 数 列 x n 有 上 界 A \lim x_n=A,x_1<A,令 x_k<A,则x_{k+1}<A,故数列 x_n 有上界A limxn=A,x1<A,令xk<A,则xk+1<A,故数列xn有上界A
- 归纳法证单调递增: x 1 < x 2 , 令 x k − 1 < x k , 则 x k < x k + 1 , 故 数 列 x n 单 调 递 增 x_1<x_2,令x_{k-1}<x_k,则 x_k<x_{k+1},故数列 x_n 单调递增 x1<x2,令xk−1<xk,则xk<xk+1,故数列xn单调递增
N o t e Note Note: 单调有界准则只适用于数列,函数在极限处间断则极限不存在;有界但不单调数列未必有极限,例如 s i n ( x n ) sin(x_n) sin(xn)
极限存在性
基本初等函数的图像是一条连续光滑的曲线,但当函数某点 a a a 未定义时,若要探讨函数在该点的函数值就需要引入工具 — 极限。
极限:描述了函数在一个未定义点 a a a 附近的行为,即当 x x x 接近于 a a a 时, f ( x ) f(x) f(x) 的值就会极度接近 L L L。
如何描述接近的过程呢?
自然语言:只要
x
x
x 距离
a
(
x
≠
a
)
a(x ≠ a)
a(x=a) 不超过
δ
δ
δ,
f
(
x
)
f(x)
f(x) 的值距离
L
L
L 就不会超过
ε
ε
ε
ε−δ 语言:
∀
ε
>
0
\forall ε > 0
∀ε>0,
∃
δ
>
0
\exists δ>0
∃δ>0,当
0
<
∣
x
−
a
∣
<
δ
0<|x-a| < δ
0<∣x−a∣<δ 时,
∣
f
(
x
)
−
L
∣
<
ε
|f(x)-L| < ε
∣f(x)−L∣<ε
1. 极限存在
函数极限 lim x → x 0 f ( x ) = A \lim_{x \to x_0} f(x)=A limx→x0f(x)=A
- 定义: ∀ ϵ > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , 恒 有 ∣ f ( x ) − A ∣ < ϵ 成 立 \forall \epsilon >0,\exist \delta>0,当 0<|x-x_0|<\delta时,恒有 |f(x)-A|<\epsilon成立 ∀ϵ>0,∃δ>0,当0<∣x−x0∣<δ时,恒有∣f(x)−A∣<ϵ成立
- 左右极限: lim x → x 0 − f ( x ) = lim x → x 0 + f ( x ) \lim_{x \to x_0^-} f(x)=\lim_{x \to x_0^+} f(x) x→x0−limf(x)=x→x0+limf(x)
数列极限 lim n → ∞ x n = A \lim_{n \to \infin} x_n=A limn→∞xn=A
- 定义: ∀ ϵ > 0 , ∃ 正 整 数 N , 当 n > N 时 , 恒 有 ∣ x n − A ∣ < ϵ 成 立 \forall \epsilon >0,\exist 正整数N,当 n > N时,恒有 |x_n-A|<\epsilon成立 ∀ϵ>0,∃正整数N,当n>N时,恒有∣xn−A∣<ϵ成立
- 海涅定理: 任 意 数 列 x n , x n → x 0 ( n → ∞ ) , 有 lim n → ∞ f ( x n ) = A < = > lim x → x 0 f ( x ) = A 任意数列 x_n,x_n\to x_0 (n \to \infin),有 \lim_{n \to \infin} f(x_n)=A<=>\lim_{x \to x_0}f(x)=A 任意数列xn,xn→x0(n→∞),有limn→∞f(xn)=A<=>limx→x0f(x)=A
2. 极限不存在
- 左右极限存在:
lim x → x 0 − f ( x ) ≠ lim x → x 0 + f ( x ) \lim_{x \to x_0^-} f(x)≠\lim_{x \to x_0^+} f(x) x→x0−limf(x)=x→x0+limf(x) - 左右极限不存在:
左 极 限 : lim x → 0 − f ( x ) = − ∞ 左极限:\lim_{x \to 0^-} f(x)= -∞ 左极限:x→0−limf(x)=−∞ 右 极 限 : lim x → 0 + f ( x ) = + ∞ 右极限:\lim_{x \to 0^+} f(x)=+∞ 右极限:x→0+limf(x)=+∞
lim x → 0 + f ( x ) D N E \lim_{x \to 0^+} f(x)DNE x→0+limf(x)DNE