多元函数微分学
一、基本概念
需要熟练掌握概念的描述,容易考选择题。
1.平面点集的概念
正向证明有点难,可以反向证伪
2.极限
lim
x
→
x
0
,
y
→
y
0
(
x
,
y
)
=
A
\lim_{x\to x_0,y\to y_0}(x,y) = A
x→x0,y→y0lim(x,y)=A
多元微分下洛必达、泰勒展开、单调有界准则不可用
并且极限会排除不存在的路径,要求的是每个方向的极限都存在并且相等
因此求极限是否存在,关键在于是否存在特殊路径,使得极限不一致
3.连续
lim
x
→
x
0
,
y
→
y
0
(
x
,
y
)
=
f
(
x
0
,
y
0
)
\lim_{x\to x_0,y\to y_0}(x,y) = f(x_0,y_0)
x→x0,y→y0lim(x,y)=f(x0,y0)
如果f(x,y)在闭区域D上连续,则f(x,y)在D上有界
4.偏导数
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
,
y
0
)
+
f
(
x
0
,
y
0
)
Δ
x
\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x,y_0)+f(x_0,y_0)}{\Delta x}
Δx→0limΔxf(x0+Δx,y0)+f(x0,y0)
存在,则称此为极限f(x,y)对x的偏导
TIPS
- 二阶偏导数 f x y ′ f ( x , y ) f'_{xy}f(x,y) fxy′f(x,y)和 f y x ′ f ( x , y ) f'_{yx}f(x,y) fyx′f(x,y)是同样的
- 在 f ( x , y 0 ) = 0 f(x,y_0)=0 f(x,y0)=0的情况下, f x ′ ( x , y 0 ) = [ f ( x , y 0 ) ] x ′ = f x ′ ( x , y ) ∣ y = y 0 f'_x(x,y_0)=[f(x,y_0)]'_x=f'_x(x,y)|_{y=y_0} fx′(x,y0)=[f(x,y0)]x′=fx′(x,y)∣y=y0
- 注意:多元微分中的
∂
z
∂
x
\frac{∂z}{∂x}
∂x∂z不可拆分看成
∂
z
∂z
∂z除以
∂
x
∂x
∂x,这和一元函数中的
d
z
d
x
\frac{dz}{dx}
dxdz不一样,数值上
∂
z
∂
x
\frac{∂z}{∂x}
∂x∂z和
F
x
′
F
z
′
\frac{F'_x}{F'_z}
Fz′Fx′一样
5.偏导数连续
对于z=f(x,y)讨论在某特殊点(x0,y0)是否连续,其步骤为:
- 用定义法求 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f'_x(x_0,y_0), f'_y(x_0,y_0) fx′(x0,y0),fy′(x0,y0)
- 用公式法求 f x ′ ( x , y ) , f y ′ ( x , y ) f'_x(x,y), f'_y(x,y) fx′(x,y),fy′(x,y)
- 计算 lim x → x 0 , y → y 0 f x ′ ( x , y ) \lim_{x\to x_0, y\to y_0}f'_x(x,y) limx→x0,y→y0fx′(x,y)和 lim x → x 0 , y → y 0 f y ′ ( x , y ) \lim_{x\to x_0, y\to y_0}f'_y(x,y) limx→x0,y→y0fy′(x,y),分别比较是否和 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f'_x(x_0,y_0), f'_y(x_0,y_0) fx′(x0,y0),fy′(x0,y0)相等,如果相等则在点(x0,y0)处偏导数连续
- ∂x和dx的区别是什么?
TIPS:求极限的时候,可以将极限已确认的部分提出用于简化计算
6.可微分
全增量减去各个自变量的偏增量部分的极限为0则可微分
求可微的步骤:
- 写出全增量 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x, y_0+\Delta y)-f(x_0, y_0) Δz=f(x0+Δx,y0+Δy)−f(x0,y0)
- 写出线性增量 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy,其中 Δ x = f x ′ ( x 0 , y 0 ) , Δ y = f y ′ ( x 0 , y 0 ) \Delta x=f'_x(x_0,y_0),\Delta y=f'_y(x_0,y_0) Δx=fx′(x0,y0),Δy=fy′(x0,y0)
- 作极限 lim Δ x → x 0 , Δ y → y 0 Δ z − ( A Δ x + B Δ y ) ( Δ x ) 2 + ( Δ y ) 2 \lim_{\Delta x \to x_0, \Delta y \to y_0}\frac{\Delta z-(A\Delta x+B\Delta y)}{\sqrt {(\Delta x)^2+(\Delta y)^2}} Δx→x0,Δy→y0lim(Δx)2+(Δy)2Δz−(AΔx+BΔy)如果极限为0,则可微,反之则不可微
TIPS:在第3步判断是否可微的时候,如果最后的结果有两个变量不好计算,可以取特殊路径,比如令 x → x 0 , y → k x x\to x_0, y\to kx x→x0,y→kx
二、多元微分计算
2.1复合函数求导法
1.链式求导规则
2.全导数
3.全微分形式不变性
比如对于y=f(u), u=g(x),有
y
x
′
=
y
u
′
⋅
u
x
′
y'_x=y'_u\cdot u'_x
yx′=yu′⋅ux′,也可以表示为:
d
y
=
y
u
′
d
u
=
y
x
′
d
x
dy=y'_udu=y'_xdx
dy=yu′du=yx′dx,这个是一元微分的不变性
全微分形式不变指出:全微分既可以用最终变量表示,也可以用中间变量表示。这使得微分的表示不一定要用最终的x,y表示,也可以用中间变量u,v表示,从而隐藏了一部分复杂的关系细节,在复合关系难以理清的时候,可以使用。
2.2 隐函数求导法
1.一个方程的情形(公式法)
此法又称为隐函数存在定理
设F(x,y,z)=0,在点P0(x0,y0,z0)处满足
F
(
P
0
)
=
0
F(P_0)=0
F(P0)=0并且
F
z
′
(
P
0
)
≠
0
F'_z(P_0)\neq 0
Fz′(P0)=0则在P0的某邻域内可确定z=z(x,y)并且有
∂
z
∂
x
=
−
F
x
′
F
z
′
,
∂
z
∂
y
=
−
F
y
′
F
z
′
\frac{∂z}{∂x}=-\frac{F'_x}{F'_z},\frac{∂z}{∂y}=-\frac{F'_y}{F'_z}
∂x∂z=−Fz′Fx′,∂y∂z=−Fz′Fy′
2.方程组情形
3.方法和总论
多元微分的计算的三大基本思路是:1.链式求导规则2.隐函数存在定理(公式法)还有3.全微分形式不变性
隐函数定理:由隐函数推导出普通函数及其微分的定理
对于一般的多元微分计算,考虑三种方法:公式法、全微分、偏微分求导法
TIPS:
- 对于难以求偏导的,可以使用先代入具体点,后求解。这一点不只是可以用于一阶求导,也可以在知道一阶导数,但是二阶导数求导十分复杂时用于简化二阶导数式子。这种方法可用范围十分广泛,包括隐函数都能用
- 幂指函数多元微分:换元法、对数化(两边加ln)、指数化
- 对于拉格朗日乘数法求条件极值仍需要加强理解,以及30讲练习11.5
- 如果出现微分难以计算,可以试试交换下求导次序
- 对于一些求微分的题目,可以试试将其转化为隐函数然后使用公式法,可能会更快
- 注意:多元微分中的 ∂ z ∂ x \frac{∂z}{∂x} ∂x∂z不可拆分看成 ∂ z ∂z ∂z除以 ∂ x ∂x ∂x,这和一元函数中的 d z d x \frac{dz}{dx} dxdz不一样,数值上 ∂ z ∂ x \frac{∂z}{∂x} ∂x∂z和 F x ′ F z ′ \frac{F'_x}{F'_z} Fz′Fx′一样
三、极值和最值问题
三大考察点:概念、无条件极值、有条件极值
3.1 无条件极值
先找必要条件:
点X0(x0,y0)使得f’x(x0,y0)=f’y(x0,y0)=0,则点X0为驻点,是可能的极值点
再找充分条件
令
{
f
x
x
′
′
(
x
0
,
y
0
)
=
A
>
0
f
x
y
′
′
(
x
0
,
y
0
)
=
f
y
x
′
′
(
x
0
,
y
0
)
=
B
f
y
y
′
′
(
x
0
,
y
0
)
=
C
\left\{ \begin{aligned} f''_{xx}(x_0,y_0) & = A>0 \\ f''_{xy}(x_0,y_0) & = f''_{yx}(x_0,y_0)=B \\ f''_{yy}(x_0,y_0) & = C \end{aligned} \right.
⎩⎪⎨⎪⎧fxx′′(x0,y0)fxy′′(x0,y0)fyy′′(x0,y0)=A>0=fyx′′(x0,y0)=B=C
- 当 Δ = A C − B 2 > 0 \Delta=AC-B^2>0 Δ=AC−B2>0并且 f x x ′ ′ > 0 f''_{xx}>0 fxx′′>0时, f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)为极小值
- 当 Δ = A C − B 2 > 0 \Delta=AC-B^2>0 Δ=AC−B2>0并且 f x x ′ ′ < 0 f''_{xx}<0 fxx′′<0时, f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)为极大值
- 当 Δ = A C − B 2 < 0 \Delta=AC-B^2<0 Δ=AC−B2<0并且 f x x ′ ′ < 0 f''_{xx}<0 fxx′′<0时, ( x 0 , y 0 ) (x_0,y_0) (x0,y0)非极值点
3.2 条件极值拉格朗日乘数法
不需要将详细计算过程写到卷子上,列出方程组直接写解之
TIPS:轮换对等性、全微分不变性
四、偏微分方程
考题类型:
- 已知偏导数表达式,求z=f(x,y)
- 给出变换,话已知偏微分方程位常微分方程,求f(u)
二重积分
一、概念
1.和式极限
在长方形区域[a,b]x[c,d]上的二重积分为:
lim
n
→
∞
∑
i
=
1
n
∑
i
=
1
n
f
(
a
+
b
−
a
n
i
,
c
+
d
−
c
n
j
)
∗
b
−
a
n
∗
d
−
c
n
\lim_{n\to \infty} \sum_{i=1}^n \sum_{i=1}^n f(a+\frac{b-a}{n}i, c+\frac{d-c}{n}j)*\frac{b-a}{n}*\frac{d-c}{n}
n→∞limi=1∑ni=1∑nf(a+nb−ai,c+nd−cj)∗nb−a∗nd−c
2.普通对称性
3.轮换对称性
TIPS:上述的注十分重要,轮换对称性经常结合基本不等式考察。并且在某些情况下, 一元函数f(x)可以通过二元化化成g(x,y)然后使用轮换对称性加基本不等式(强化30讲 例题14.598)
轮换对称性和积分区域关于y=x对称的区别在于:轮换对称性强调的是被积函数交换x,y之后,积分是否不变,而y=x强调的是,被积函数交换x,y之后,积函数是否相等
4.二重积分中值定理
设函数f(x,y)在比区域D上连续, σ \sigma σ是D的面积,则在D上至少存在一点(a,b)使得 ∬ D f ( x , y ) d σ = f ( a , b ) σ \iint_D f(x,y)d\sigma=f(a,b)\sigma ∬Df(x,y)dσ=f(a,b)σ
5.周期性
如果化成累次积分之后,一元积分有周期性机会,则可以化简计算
典型:设
D
=
(
x
,
y
)
∣
0
≤
x
≤
π
,
0
≤
y
≤
π
D={(x,y)|0 \leq x\leq \pi ,0 \leq y\leq \pi}
D=(x,y)∣0≤x≤π,0≤y≤π则
I
=
∫
0
π
∣
c
o
s
(
x
+
y
)
∣
d
σ
=
∫
0
π
d
x
∫
0
π
∣
c
o
s
(
x
+
y
)
∣
d
y
=
∫
0
π
∫
0
π
∣
c
o
s
y
∣
d
y
d
x
I = \int_{0}^{\pi}|cos(x+y)|d\sigma = \int_{0}^{\pi}dx\int_{0}^{\pi}|cos(x+y)|dy = \int_{0}^{\pi}\int_{0}^{\pi}|cosy|dydx
I=∫0π∣cos(x+y)∣dσ=∫0πdx∫0π∣cos(x+y)∣dy=∫0π∫0π∣cosy∣dydx
二重积分的计算
后积先定限,限内画条线,先交写下限,后交写上限
1.直角坐标系
2.极坐标系和换序
3.直极互化
TIPS:
- 首先考虑一般对称性和轮换对称性
- 接着考虑是否需要交换积分次序,对需要交换积分次序的函数保持敏感
- 然后考虑是否需要进行极坐标和直角坐标的转化
- 难以求解的一重积分可以使用轮换对称性将其化为二重积分,然后简化求解过程。比如30讲练习12.9和12.10
- 常见结论: ∫ 0 + ∞ e − x 2 d x = π 2 \int_{0}^{+∞}e^{-x^2}dx=\frac{\sqrt{\pi}}{2} ∫0+∞e−x2dx=2π