【风电功率预测】【多变量输入单步预测】基于TCN-GRU的风电功率预测研究(Matlab代码实现)

            💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、TCN-GRU模型概述

1. 时间卷积网络(TCN)

2. 门控循环单元(GRU)

三、基于TCN-GRU的风电功率预测模型构建

四、研究优势与挑战

优势

挑战

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于TCN-GRU(时间卷积网络-门控循环单元)的风电功率预测研究,在风电功率预测领域是一个新兴且重要的研究方向。以下是对该研究的详细分析:

一、研究背景与意义

风能作为一种清洁、可再生的能源,其发电过程受多种自然因素影响,如风速、风向、温度等,导致风电功率具有显著的波动性和不确定性。准确的风电功率预测对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。

二、TCN-GRU模型概述

1. 时间卷积网络(TCN)
  • 功能:TCN通过一维卷积层处理序列数据,能够有效地捕捉到时间序列中的局部特征,同时减少了计算复杂度,并有助于防止梯度消失问题。
  • 优势:相比传统的RNN和LSTM,TCN具有更好的并行计算能力,能够更快地处理长序列数据。
2. 门控循环单元(GRU)
  • 功能:GRU是RNN的一种变体,通过引入更新门和重置门,能够处理长期依赖关系,并保留对重要信息的记忆。
  • 优势:相比LSTM,GRU具有更少的参数和更快的训练速度,同时保持了良好的性能。

三、基于TCN-GRU的风电功率预测模型构建

基于TCN-GRU的风电功率预测模型构建主要包括以下几个步骤:

  1. 数据收集:收集风电场的历史风速、风向、温度等气象数据以及相应的风电发电量数据。
  2. 数据预处理:对数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
  3. 数据归一化:对数据进行归一化处理,以消除不同量纲对模型训练的影响。
  4. 特征提取:使用TCN对预处理后的时间序列数据进行特征提取,获取与风电功率相关的时序特征。
  5. 时序依赖关系捕捉:将TCN提取的特征输入到GRU中,利用GRU捕捉这些特征之间的时序依赖关系。
  6. 模型训练与评估:使用训练集数据对TCN-GRU模型进行训练,通过反向传播算法更新网络参数。使用测试集数据对训练好的模型进行评估,计算预测误差(如均方误差MSE、平均绝对误差MAE等),以评估模型的预测性能。

四、研究优势与挑战

优势
  1. 高精度预测:TCN-GRU模型能够同时捕捉风电功率数据中的时空特征和关键信息,实现高精度的预测。
  2. 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
  3. 稳定性好:通过引入GRU的门控机制,模型在处理时序数据时具有更好的稳定性。
挑战
  1. 计算复杂度:TCN-GRU模型的计算复杂度较高,需要较长的训练时间和较高的计算资源。
  2. 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失或异常值,可能会对预测结果产生较大影响。
  3. 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作以获得最佳预测效果。

五、未来展望

随着深度学习技术的不断发展,基于TCN-GRU的风电功率预测研究将不断深入和完善。未来可以通过引入更先进的算法和技术(如Transformer、图神经网络等)对TCN-GRU模型进行优化,以进一步提高预测精度和训练效率。同时,还可以考虑将多变量输入和单步预测扩展到多步预测,以更好地满足实际应用的需求。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值