【模糊预测控制】模型预测控制MPC算法求解轨迹跟踪最优控制问题【含Matlab源码 3622期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、模型预测控制MPC无人驾驶车辆轨迹跟踪简介

无人驾驶车辆运动规划与控制需要通过对车辆运动学或者动力学系统的控制来实现。建立合理的车辆系统模型不仅是设计模型预测控制器的前提,也是实现车辆道路跟踪功能的基础。因此,在建立模型预测控制器时,必须根据无人驾驶车辆的具体行驶工况,通过选取合适的控制变量,建立能够准确描述无人驾驶车辆运动关系约束的运动学模型。
车辆在地面运动的动力学过程是非常复杂的,为了尽量描述车辆运动,需要建立复杂的微分方程组,并用多个状态变量来描述其运动。用于模型预测控制的模型只要能够表现出车辆运动学与动力学约束,就可以使模型预测控制器实现预
定控制目的。本文通过建立能够尽量准确反映车辆运动特性,并且有利于模型预测控制器设计的简化车辆运动学模型。在此基础上,对建立的模型进行验证。

无人驾驶车辆在一个给定位置出发,通过离散轨迹点或者连续轨迹函数的指引,最终跟踪上期望轨迹。轨迹跟踪仿真基本设定为:车辆从坐标原点出发,以期望纵向速度 v=1m/s 跟踪一条直线 y=2。采样时间为 50ms,仿真时间设定为 20s,在 MATLAB 环境下对无人驾驶车辆的直线轨迹跟踪过程进行仿真。
利用第三部分设计的控制器,在 MATLAB 中编写相关程序,得到仿真结果如图 4.1 所示,仿真实验可大致分为四个部分:参考轨迹生成、仿真系统变量初始化、系统矩阵变量定义和控制器设计。
首先,生成参考轨迹,本文选取直线 y=2 作为参考轨迹进行跟踪,该部分的程序如下。

⛄二、部分源代码

nx = 5;
ny = 2;
nu = 2;
nlobj = nlmpc(nx,ny,nu);

%% Prediction and control horizon and sampling time
Ts = 0.1;
p = 20;
c = 1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;
nlobj.ControlHorizon = c;

%% State and output equation
nlobj.Model.StateFcn = “singleTrackStateDT0”;
nlobj.Model.IsContinuousTime = false;
nlobj.Model.OutputFcn = @(x,u,Ts) [x(4); x(5)];
nlobj.Model.NumberOfParameters = 1;

%% Weights
nlobj.Weights.OutputVariables = [30 90];
nlobj.Weights.ManipulatedVariablesRate = [40,80];

%% sample time
nloptions = nlmpcmoveopt;
nloptions.Parameters = {Ts};

%% reference trajectory
yref=csvread(“position.csv”);

%% initial conditions
x0 = [0; 0; 0; yref(1,1); yref(1,2)];
u0 = zeros(nu,1);
validateFcns(nlobj,x0,u0,[], {Ts});

x = x0;
y = [x(4);x(5)];
mv = u0;

%% simulation
Duration = 10;
xHistory = x;
index = 1;
for ct = 1:(Duration/Ts)
% Ignoring the estimation of hidden states
[mv,nloptions] = nlmpcmove(nlobj,x,mv,yref(index,:),[],nloptions);
% Implement first optimal control move
x = singleTrackStateDT0(x,mv,Ts);
% Save plant states
xHistory = [xHistory x];
index = index+1;
end

%% plotting
timespan = 0:Ts:Duration;
tiledlayout(2,1)

nexttile
plot(timespan,xHistory(4,:),timespan,yref(:,1))
title(‘Pos x’)

nexttile
plot(timespan,xHistory(5,:),timespan,yref(:,2))
title(‘Pos y’)

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]徐洁.基于小波分析的脉搏波信号处理[J].电子设计工程. 2013,21(11)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值