torch.nn.Softmax( )与torch.nn.functional.softmax( )函数的异同点

一、相同点

torch.nn.Softmax()和torch.nn.functional.softmax()函数都是用于计算softmax函数的输出,将输入的值转换为概率分布。

二、不同点

1.torch.nn.Softmax()的用法

torch.nn.Softmax()是一个,在神经网络的模型中使用,通常作为一个层(layer)添加到模型中

下面是一个使用torch.nn.Softmax()的示例:

2.torch.nn.functional.softmax()的用法

是一个函数,可以直接调用,通常在模型的前向传播过程中使用

下面是一个使用torch.nn.functional.softmax()的示例:

无论是使用 torch.nn.functional.softmax() 还是 torch.nn.Softmax(),功能都是一样的,都是将输入的值转换为概率分布

只是使用的方式不同:torch.nn.Softmax()作为一个层添加到模型中,   torch.nn. functional.softmax()作为一个函数直接调用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值