opencv利用帧差法背景差分实现运动目标检测

运动物体检测顾名思义就是在视频(视频文件、摄像头获取)中检测运动物体(目标)。

OpenCV中常用的运动物体检测有背景差法、帧差法、光流法,运动物体检测广泛应用于视频安全监控、车辆检测等方面。

本博文主要介绍背景差法与帧差法:

背景差法:就是用原图像减去背景模型,剩下的就是前景图像,即运动目标

帧差法:就是利用相邻的两帧或者三帧图像,利用像素之间的差异性,判断是否有运动目标

(视频就是一帧一帧图像组成的、求图像差异最基本的就是图像减法--suntract,absdiff) 

背景减法基本步骤:原图-背景------阈值处理------去除噪声(腐蚀滤波)------膨胀连通-----查找轮廓-----外接矩形(椭圆/圆)

 

一个摄像头:

#include "opencv2/opencv.hpp"
#include<iostream>
using namespace std;
using namespace cv;

Mat MoveDetect(Mat background, Mat img)
{   
	//将background和img转为灰度图
	Mat result = img.clone();
	Mat gray1, gray2;
	cvtColor(background, gray1, CV_BGR2GRAY);
	cvtColor(img, gray2, CV_BGR2GRAY);

//进行canny边缘检测 
	Canny(background, background, 0, 30, 3);

	//将background和img做差;对差值图diff进行阈值化处理
	Mat diff;
	absdiff(gray1, gray2, diff);
	//imshow("absdiss", diff);
	threshold(diff, diff, 50, 255, CV_THRESH_BINARY);
	//imshow("threshold", diff);

	//腐蚀膨胀消除噪音
	/*
	Mat element = getStructuringElement(MORPH_RECT, Size(3, 3));
	Mat element2 = getStructuringElement(MORPH_RECT, Size(15, 15));
	erode(diff, diff, element);
	//imshow("erode", diff);
	dilate(diff, diff, element2);
	//imshow("dilate", diff);
	*/

	//二值化后使用中值滤波+膨胀
	Mat element = getStructuringElement(MORPH_RECT, Size(11, 11));
	medianBlur(diff, diff, 5);//中值滤波
	//imshow("medianBlur", diff);
	dilate(diff, diff, element);
	//blur(diff, diff, Size(10, 10)); //均值滤波
	//imshow("dilate", diff);

	//查找并绘制轮廓
	vector<vector<Point>&
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值