异常检测
github传送门:https://github.com/donglee-afar/logdeep
LogDeep 是一个开源的基于深度学习的日志分析工具包,用于自动异常检测。
主要特点:
-
模块化设计
-
支持开箱即用的多日志事件功能
-
最先进的(包括来自 deeplog、loganomaly、robustlog 的结果......)
参考论文:
深度日志 DeepLog
[ CCS'17 ] DeepLog:通过深度学习从系统日志中进行异常检测和诊断
日志异常 LogAnomaly
[ IJCAI'19 ]日志异常:非结构化日志中顺序和定量异常的无监督检测
健壮日志 RobustLog
[ FSE'19 ]稳健的基于日志的异常检测在不稳定的日志数据上
行为预测
github传送门:https://github.com/RaptorMai/online-continual-learning
相关论文:
- 具有对抗性 Shapley 值的在线课堂增量持续学习(AAAI 2021)
- 监督对比重播:重新审视在线课堂增量持续学习中的最近类均值分类器(CVPR2021 研讨会)
- 图像分类中的在线持续学习:实证调查(神经计算),正式版
帧预测
传送门:Next-Frame Video Prediction with Convolutional LSTMs
卷积 LSTM 架构通过在 LSTM 层中引入卷积循环单元,将时间序列处理和计算机视觉结合在一起。 在这个例子中,我们将探索卷积 LSTM 模型在下一帧预测的应用中,即在给定一系列过去帧的情况下预测接下来会出现什么视频帧的过程。