概率论与数理统计B 重点/笔记梳理 第六章

本文详细讲解了数理统计中的抽样与抽样分布,包括基本概念、抽样方法(如简单随机抽样)、样本分布函数、格列文科定理、数字特征(如均值、方差等),以及标准正态、卡方、t分布和F分布的性质与分位点计算。深入理解这些理论有助于进行统计推断和假设检验。
摘要由CSDN通过智能技术生成

第六章 抽样与抽样分布

第一节 数理统计的基本概念

1.明确:概率论是总体推到局部,而数理统计是局部推到总体。

2.研究对象的全体组成的集合就是总体,组成总体的每一个元素就是个体。

3.以一定方式从总体中抽取的若干个个体。

4.上面的一定方式就是抽样方法,常见的的抽样方法就是简单随机抽样,即:我抽取的样本之间相互独立且同分布

5.样本分布函数:n个样本值排序后,不超过x的个数再去除以n。

6.格列文科定理:当n趋于正无穷,样本分布函数Fn(x)是无限趋近于X的分布函数的;

7.数字特征:假设一个函数——也是随机变量,只跟X的一个样本:x1、x2、、、、xn有关系,并且这个函数是定义在样本空间上的一个连续函数,那么这个函数可以作为一个统计量的或样本的数字特征。

8.常见的数字特征:

  • 样本均值;
  • 样本方差;
  • 样本标准差;
  • 样本k阶原点矩;
  • 样本k阶中心矩;

tips:计算样本方差的时候有一个简便公式:
∑ ( x i − x ‾ ) 2 = ∑ x 2 − x ‾ 2 \sum(x_i-\overline{x})^2=\sum x^2-\overline{x}^2 (xix)2=x2x2

第二节 抽样分布定理

1.对于一个标准正态分布,如果说对于给定的alpha:
P ( U > u α ) = ∫ u α + ∞ 1 2 π e − t 2 2 d t = α a k a : P ( U ≤ u α ) = 1 − α P(U>u_{\alpha})=\int_{u_{\alpha}}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt=\alpha \\ aka:P(U \le u_{\alpha})=1-\alpha P(U>uα)=uα+2π 1e2t2dt=αaka:P(Uuα)=1α
那么alpha为标准正态分布的上alpha分位点(上侧临界值)。

tips:如alpha满足:
P ( ∣ U ∣ > u α 2 ) = α P(|U|>u_{\frac{\alpha}{2}})=\alpha P(U>u2α)=α
那么这个u就是标准正态分布的双侧分位点

2.卡方分布

假设一组随机变量x1,…,xn相互独立且同分布于N(0,1),那么称统计量:
χ 2 = ∑ i = 1 n x i 2 ( n 为 自 由 度 ) \chi ^2=\sum_{i=1}^{n}x^2_{i}(n为自由度) χ2=i=1nxi2(n)
3.t分布

假设随机变量x服从标准正态分布,y服从卡方分布,且x与y独立,那么随机变量:
t = x y n t=\frac{x}{\sqrt{\frac{y}{n}}} t=ny x
为服从自由度为n的t分布。

特点:

  • t分布的图像跟正态分布一样是关于y轴对称的哦;

  • 对于给定的alpha,称满足条件:
    P ( t ( n ) > t α ( n ) ) = α P(t(n)>t_{\alpha}(n))=\alpha P(t(n)>tα(n))=α
    的围殴t分布的上alpha分位点。

  • 同样的如果是:
    P ( ∣ t ( n ) ∣ > t α 2 ( n ) ) = α P(|t(n)|>t_{\frac{\alpha}{2}}(n))=\alpha P(t(n)>t2α(n))=α
    那么这个t2/alpha(n)就是双侧分位点。

4.如果u服从自由度为n1的卡方分布,v服从自由度为n2的卡方分布,那么我们称呼随机变量:
F = u / n 1 v / n 2 F=\frac{u/n_1}{v/n_2} F=v/n2u/n1
为服从自由度为n1/n2的F分布,记作:
F − F ( n 1 , n 2 ) F-F(n_1,n_2) FF(n1,n2)
同样的,类比前面分布的上alpha分位点,F分布的分位数:

对于给定的alpha,0<alpha<1,称满足条件:
P { F > F α ( n 1 , n 2 ) } = α P\{F>F_{\alpha(n_1,n_2)}\}=\alpha P{F>Fα(n1,n2)}=α
的点
F α ( n 1 , n 2 ) 为 F 分 布 的 上 a l p h a 分 位 点 。 F_{\alpha}(n_1,n_2)为F分布的上alpha分位点。 Fα(n1,n2)Falpha
重点:F分布的分位点满足:
F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2)=\frac{1}{F_{\alpha}(n_2,n_1)} F1α(n1,n2)=Fα(n2,n1)1
5.(抽样分布定理

第一个定理:

假设x1、x2、、、、xn是从正态分布母体
N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
中抽取的一个简单随机样本,则对样本均值
x ‾ \overline{x} x
和样本方差
s 2 s^2 s2
有:
x ‾ − N ( μ , σ 2 n ) ( n − 1 ) s 2 σ 2 − χ 2 ( n − 1 ) x ‾ 与 s 2 相 互 独 立 \overline{x}-N(\mu,\frac{\sigma^2}{n})\\ \frac{(n-1)s^2}{\sigma^2}-\chi^2(n-1)\\ \overline{x}与s^2相互独立 xN(μ,nσ2)σ2(n1)s2χ2(n1)xs2


第二个定理:

假设x1-xn是从正态分布母体
N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
中抽取的一个简单随机样本,则对样本均值
x ‾ \overline{x} x
和样本标准差s,有:
x ‾ − μ s / n − t ( n − 1 ) \frac{\overline{x}-\mu}{s/\sqrt{n}}-t(n-1) s/n xμt(n1)


第三个定理:假设x1-xn是来自于
N ( μ 1 , σ 2 ) N(\mu_1,\sigma^2) N(μ1,σ2)
y1-yn是来自于
N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2)
的两个独立样本,那么如果记:
s ω 2 = ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 s_{\omega}^2=\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2} sω2=n1+n22(n11)s12+(n21)s22
统计量
( x ‾ − y ‾ ) − ( μ 1 − μ 2 ) s ω 1 n 1 + 1 n 2 − t ( n 1 + n − 2 − 2 ) s 1 2 s 2 2 − F ( n 1 − 1 , n 2 − 1 ) \frac{(\overline{x}-\overline{y})-(\mu_1-\mu_2)}{s_{\omega\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}}-t(n_1+n-2-2)\\ \frac{s_1^2}{s_2^2}-F(n_1-1,n_2-1) sωn11+n21 (xy)(μ1μ2)t(n1+n22)s22s12F(n11,n21)

x}-\overline{y})-(\mu_1-\mu_2)}{s_{\omega\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}}-t(n_1+n-2-2)\
\frac{s_12}{s_22}-F(n_1-1,n_2-1)
$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值