1、imu和vo的信息融合:
(1)、卡尔曼滤波
参考:http://www.cnblogs.com/xmphoenix/p/3634536.html
(2)、扩展卡尔曼滤波
参考:http://www.cnblogs.com/ymxiansen/p/5368547.html
在运动估计中,以IMU的测量值作为状态值,以视觉里程计计算出的值作为观测值,然后用EKF进行融合。
参考:《基于惯性传感器和视觉里程计的机器人定位》
2、两个vo之间的融合
3、局部帧和全局帧的融合