【数值分析Ⅰ】第二章:非线性方程求根方法

1. 基本概念

  1. 什么是非线性方程?
    在这里插入图片描述

    对于线性方程,可以使用线性代数求得精确解,所以不需要求近似解。而非线性方程大部分没有求根公式,故只能求近似根。所以接下来的求解对象都是非线性方程。

  2. 非线性方程如何求近似解?
    1. 求近似根的三步 / 三要素:
      ① 保证根存在
      ② 确定根的范围
      ③ 采用 迭代法 区间法 构造根的收敛数列 来 逐步提高根的精度
    2. 如何衡量不同方法求得的近似根的好坏?
      • 第一个标准是:误差(用于衡量近似解的精确度,误差越小,近似解越精确)
      • 第二个标准是:收敛阶(用于衡量求得近似解的快慢,收敛阶越大,收敛越快,算法越好)
        在这里插入图片描述
        • 求收敛阶:
          在这里插入图片描述
        • 收敛阶分类数列:
          在这里插入图片描述

2. 区间法

2.1 二分法

  1. 理论依据:零点定理

  2. 满足什么条件才能使用二分法?
    在这里插入图片描述

  3. 算法:
    在这里插入图片描述

  4. 如何衡量求得近似解的好坏?

    1. 误差估计:用于衡量近似解的精确度,误差越小,近似解越精确。有两种方式估计误差
      1. 事先估计:k往往偏大,主要用于理论估计
        在这里插入图片描述

      2. 事后估计:k往往偏小,主要用于实际控制
        在这里插入图片描述

    2. 收敛阶:用于衡量求得近似解的快慢,收敛阶越大,收敛越快,算法越好。因为二分法产生迭代数列的函数一样,所以采用二分法的收敛阶相同,此时的收敛阶没有太大意义。

相关题目:

  • 例题1:使用二分法求近似值
    在这里插入图片描述
  • 例题2:求二分次数—>使用 事先误差 公式建立不等式求解 【若为小数向上取整,因为分的次数越多越准确】
    在这里插入图片描述

3. 迭代法

3.1 简单迭代法

  1. 理论依据:对方程 f(x)=0 做恒等变换根不发生变化

  2. 满足什么条件才能使用迭代法?

    • 问题1:一个方程恒等变形得到的所有不动点方程构造的迭代数列都收敛吗?答案:否。比如:
      在这里插入图片描述
    • 问题2:如果不动点方程构造的迭代数列收敛,那么就一定能找到根吗?答:是。
    • 故只有构造的迭代数列收敛才可以使用迭代法。那么如何证明构造的迭代数列收敛?充分条件如下:
      在这里插入图片描述

      其中[a, b]表示根在哪个范围内,a, b的值如何确定?

      1. 如果题目没有给根的范围:根据不动点方程或不动点方程恒等变形,转为两个图像的交点,这样就能确定a, b的值。
        在这里插入图片描述
      2. 如果题目给了根的范围,则将所有式子放到一边,构造f(x)去试
        在这里插入图片描述
  3. 算法:
    在这里插入图片描述

    • 其中产生了3个专有名词:不动点方程 、迭代函数 、迭代数列
      在这里插入图片描述
  4. 如何衡量求得解的好坏?

    1. 误差估计:用于衡量近似解的精确度,误差越小,近似解越精确。有两种方式估计误差

      1. 事先估计:k往往偏大,主要用于理论估计
        在这里插入图片描述

      2. 事后估计:k往往偏小,主要用于实际控制
        在这里插入图片描述

    2. 收敛阶:用于衡量求得近似解的快慢,收敛阶越大,收敛越快,算法越好。由于迭代法的迭代函数可能不同,导致收敛速度不同,所以收敛阶在迭代法中很重要。
      在这里插入图片描述

      注意:

      1. 上面定义的证明过程:
        在这里插入图片描述
      2. 根据上面定理易知:
        在这里插入图片描述
      3. 如果迭代函数为分式,不好求导时,可以利用不动点方程,转为隐式求导。
        在这里插入图片描述
  5. 算法如何优化?

    • 增量松弛加速方法:
      ① 可以加快收敛速度;
      ② 可以将部分不收敛的迭代数列变的收敛。
      在这里插入图片描述

      改进原理如下:
      在这里插入图片描述

相关题目:

  1. 例题1:证明迭代数列收敛
    在这里插入图片描述
  2. 例题2:无论是求迭代公式还是利用迭代公式求解,都必须先证明满足使用迭代法的条件。
    在这里插入图片描述
    在这里插入图片描述
  3. 利用迭代法求近似解
    在这里插入图片描述
    在这里插入图片描述
  4. 收敛阶相关题目
    1. 用收敛阶定理解题
      在这里插入图片描述
    2. 用收敛阶定义解题
      在这里插入图片描述

3.2 牛顿迭代法 (Newton)

  1. 思想:将函数做线性化处理,把方程转化为对应的近似方程 ,再构造迭代公式。

    虽然这样感觉误差会很大,但是实际上效果却非常好:
    ① 不仅迭代次数更少,即更快的找到近似解
    ② 而且求得的近似解一般精度都很高

  2. 满足什么条件才能使用牛顿迭代法?

    • 仍然是迭代数列收敛。那么如何判断迭代函数收敛?充分条件如下:
      在这里插入图片描述
  3. 算法
    在这里插入图片描述

  4. 迭代法的几何意义:
    在这里插入图片描述

  5. 如何衡量求得近似值的好坏?

    1. 误差
      在这里插入图片描述

    2. 收敛阶:由于产生迭代数列的函数一样,所以收敛阶都一样,和二分法一样,此时收敛阶并无太大意义。但是其收敛阶至少是平分收敛的。

      在这里插入图片描述

  6. 非线性方程组求近似解的迭代公式
    在这里插入图片描述

例题:

  1. 例题1:求根号数的近似值
    在这里插入图片描述
    在这里插入图片描述
  2. 例题2:求非线性方程近似解
    在这里插入图片描述
  3. 求某非线性方程组求近似解的迭代公式
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ElegantCodingWH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值