1. 基本概念
- 什么是非线性方程?
对于线性方程,可以使用线性代数求得精确解,所以不需要求近似解。而非线性方程大部分没有求根公式,故只能求近似根。所以接下来的求解对象都是非线性方程。
- 非线性方程如何求近似解?
- 求近似根的三步 / 三要素:
① 保证根存在;
② 确定根的范围;
③ 采用 迭代法 或 区间法 构造根的收敛数列 来 逐步提高根的精度。 - 如何衡量不同方法求得的近似根的好坏?
- 第一个标准是:误差(用于衡量近似解的精确度,误差越小,近似解越精确)
- 第二个标准是:收敛阶(用于衡量求得近似解的快慢,收敛阶越大,收敛越快,算法越好)
- 求收敛阶:
- 收敛阶分类数列:
- 求收敛阶:
- 求近似根的三步 / 三要素:
2. 区间法
2.1 二分法
-
理论依据:零点定理
-
满足什么条件才能使用二分法?
-
算法:
-
如何衡量求得近似解的好坏?
- 误差估计:用于衡量近似解的精确度,误差越小,近似解越精确。有两种方式估计误差
-
事先估计:k往往偏大,主要用于理论估计
-
事后估计:k往往偏小,主要用于实际控制
-
- 收敛阶:用于衡量求得近似解的快慢,收敛阶越大,收敛越快,算法越好。因为二分法产生迭代数列的函数一样,所以采用二分法的收敛阶相同,此时的收敛阶没有太大意义。
- 误差估计:用于衡量近似解的精确度,误差越小,近似解越精确。有两种方式估计误差
相关题目:
- 例题1:使用二分法求近似值
- 例题2:求二分次数—>使用 事先误差 公式建立不等式求解 【若为小数向上取整,因为分的次数越多越准确】
3. 迭代法
3.1 简单迭代法
-
理论依据:对方程 f(x)=0 做恒等变换根不发生变化
-
满足什么条件才能使用迭代法?
- 问题1:一个方程恒等变形得到的所有不动点方程构造的迭代数列都收敛吗?答案:否。比如:
- 问题2:如果不动点方程构造的迭代数列收敛,那么就一定能找到根吗?答:是。
- 故只有构造的迭代数列收敛才可以使用迭代法。那么如何证明构造的迭代数列收敛?充分条件如下:
其中[a, b]表示根在哪个范围内,a, b的值如何确定?
- 如果题目没有给根的范围:根据不动点方程或不动点方程恒等变形,转为两个图像的交点,这样就能确定a, b的值。
- 如果题目给了根的范围,则将所有式子放到一边,构造f(x)去试
- 如果题目没有给根的范围:根据不动点方程或不动点方程恒等变形,转为两个图像的交点,这样就能确定a, b的值。
- 问题1:一个方程恒等变形得到的所有不动点方程构造的迭代数列都收敛吗?答案:否。比如:
-
算法:
- 其中产生了3个专有名词:不动点方程 、迭代函数 、迭代数列
- 其中产生了3个专有名词:不动点方程 、迭代函数 、迭代数列
-
如何衡量求得解的好坏?
-
误差估计:用于衡量近似解的精确度,误差越小,近似解越精确。有两种方式估计误差
-
事先估计:k往往偏大,主要用于理论估计
-
事后估计:k往往偏小,主要用于实际控制
-
-
收敛阶:用于衡量求得近似解的快慢,收敛阶越大,收敛越快,算法越好。由于迭代法的迭代函数可能不同,导致收敛速度不同,所以收敛阶在迭代法中很重要。
注意:
- 上面定义的证明过程:
- 根据上面定理易知:
- 如果迭代函数为分式,不好求导时,可以利用不动点方程,转为隐式求导。
- 上面定义的证明过程:
-
-
算法如何优化?
- 增量松弛加速方法:
① 可以加快收敛速度;
② 可以将部分不收敛的迭代数列变的收敛。
改进原理如下:
- 增量松弛加速方法:
相关题目:
- 例题1:证明迭代数列收敛
- 例题2:无论是求迭代公式还是利用迭代公式求解,都必须先证明满足使用迭代法的条件。
- 利用迭代法求近似解
- 收敛阶相关题目
- 用收敛阶定理解题
- 用收敛阶定义解题
3.2 牛顿迭代法 (Newton)
-
思想:将函数做线性化处理,把方程转化为对应的近似方程 ,再构造迭代公式。
虽然这样感觉误差会很大,但是实际上效果却非常好:
① 不仅迭代次数更少,即更快的找到近似解
② 而且求得的近似解一般精度都很高 -
满足什么条件才能使用牛顿迭代法?
- 仍然是迭代数列收敛。那么如何判断迭代函数收敛?充分条件如下:
- 仍然是迭代数列收敛。那么如何判断迭代函数收敛?充分条件如下:
-
算法
-
迭代法的几何意义:
-
如何衡量求得近似值的好坏?
-
误差
-
收敛阶:由于产生迭代数列的函数一样,所以收敛阶都一样,和二分法一样,此时收敛阶并无太大意义。但是其收敛阶至少是平分收敛的。
-
-
非线性方程组求近似解的迭代公式
例题:
- 例题1:求根号数的近似值
- 例题2:求非线性方程近似解
- 求某非线性方程组求近似解的迭代公式