15、PyTorch教程--- Convents简介

21 篇文章 1 订阅 ¥19.90 ¥99.00
本文是PyTorch教程的一部分,主要讲解如何从零开始构建卷积神经网络(CNN)模型,涉及Conv2d、MaxPool2d、ReLU、View和Linear Layer等步骤。在训练过程中,文章介绍了训练与验证模式的区别,特别是丢弃层在训练和验证阶段的不同行为,以及在训练模式中计算梯度和更新模型参数的过程。
摘要由CSDN通过智能技术生成

修道院是关于从头开始构建CNN模型的。网络架构将包含以下步骤的组合 -

Conv2d(卷积层)
MaxPool2d(最大池化层)
Rectified Linear Unit(修正线性单元)
View(展平层)
Linear Layer(全连接层)
训练模型
训练模型的过程与图像分类问题相同。以下代码片段完成了在提供的数据集上训练模型的步骤 -

def fit(epoch,model,data_loader,phase 
= 'training',volatile = False):
   if phase == 'training':
      model.train()
   if phase == 'training':
      model.train()
   if phase == 'validation':
      model.eval()
   volatile=True
   running_loss = 0.0
   running_correct = 0
   for batch_idx , (data,target) in enumerate(data_loader):
      if is_cuda:
         data,target = data.cuda(),ta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值