修道院是关于从头开始构建CNN模型的。网络架构将包含以下步骤的组合 -
Conv2d(卷积层)
MaxPool2d(最大池化层)
Rectified Linear Unit(修正线性单元)
View(展平层)
Linear Layer(全连接层)
训练模型
训练模型的过程与图像分类问题相同。以下代码片段完成了在提供的数据集上训练模型的步骤 -
def fit(epoch,model,data_loader,phase
= 'training',volatile = False):
if phase == 'training':
model.train()
if phase == 'training':
model.train()
if phase == 'validation':
model.eval()
volatile=True
running_loss = 0.0
running_correct = 0
for batch_idx , (data,target) in enumerate(data_loader):
if is_cuda:
data,target = data.cuda(),ta