图文证明 费马,罗尔,拉格朗日,柯西

这篇博客通过图文并茂的方式详细介绍了数学中的重要定理——罗尔定理、拉格朗日中值定理和柯西中值定理。博主首先阐述了费马引理,然后分别证明了罗尔和拉格朗日定理,并指出拉格朗日定理在解释平均速度问题上的直观应用。在证明柯西定理时,博主发现了证明中存在的错误,并提出使用参数方程进行修正。最后,博主引用了一个视频资源作为进一步学习的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图文证明 罗尔,拉格朗日,柯西

费马引理和罗尔都比较好证,不过多阐述,看图即可:

费马引理:

在这里插入图片描述

罗尔定理:

在这里插入图片描述
重点来证明拉格朗日和柯西

拉格朗日:

在这里插入图片描述
我认为不需要去看l(x)的那一行更好推:
详细的推理过程:

构造 h ( x ) = f ( x ) − l ( x ) , 因为    a , b    两点为交点 ,    f ( a ) = l ( a ) ,    f ( b ) = l ( b ) , 构造h(x) = f(x) - l(x), \quad \text{因为} \; a, b \; \text{两点为交点}, \; f(a) = l(a), \; f(b) = l(b), 构造h(x)=f(x)l(x),因为a,b两点为交点,f(a)=l(a),f(b)=l(b),

所以    h ( a ) = h ( b ) = 0. 根据罗尔定理 ,    ∃   c ∈ ( a , b )    使得    h ′ ( ξ ) = 0. \text{所以} \; h(a) = h(b) = 0. \quad \text{根据罗尔定理}, \; \exists \, c \in (a, b) \; \text{使得} \; h'(\xi ) = 0. 所以h(a)=h(b)=0.根据罗尔定理,c(a,b)使得h(ξ)=0.

因为    h ( ξ ) = f ( ξ ) − l ( ξ ) ,    我们有    h ′ ( ξ ) = f ′ ( ξ ) − l ′ ( ξ ) . 因此 ,    h ′ ( ξ ) = f ′ ( ξ ) − l ′ ( ξ ) = 0. \text{因为} \; h(\xi ) = f(\xi ) - l(\xi ), \; \text{我们有} \; h'(\xi ) = f'(\xi ) - l'(\xi ). \quad \text{因此}, \; h'(\xi ) = f'(\xi ) - l'(\xi ) = 0. 因为h(ξ)=f(ξ)l(ξ),我们有h(ξ)=f(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值