[ESP32]:TFLite Micro推理CIFAR10模型

本文介绍了如何在ESP32平台上使用TensorFlowLiteMicro进行CIFAR10数据集的2D卷积神经网络模型训练,随后将模型转换为TFLite格式,并提供了两种推理方案:PC端JPEG图片转换为数组和ESP32本地JPEG解码。
摘要由CSDN通过智能技术生成

[ESP32]:TFLite Micro推理CIFAR10模型

模型训练

数据集处理

from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, load_model, Model
from keras.layers import Input, Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D, GlobalAveragePooling2D
import pandas as pd
import matplotlib.pyplot as plt
import time, pickle
from keras.utils import to_categorical
from keras import layers
import tensorflow as tf
from tensorflow.keras.callbacks import EarlyStopping

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

y_train = y_train.reshape(y_train.shape[0])
y_test = y_test.reshape(y_test.shape[0])

print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'training samples')
print(x_test.shape[0], 'validation samples')

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

模型搭建

def build_model():
    model = tf.keras.Sequential()
    model.add(layers.Conv2D(32, kernel_size=(4,4), strides=1,activation='relu', input_shape=(32, 32, 3)))
    model.add(layers.MaxPooling2D((2, 2)))

    model.add(layers.Conv2D(32, kernel_size=(4,4), strides=1,activation='relu'))
    model.add(layers.MaxPooling2D((2, 2)))


    model.add(layers.Flatten())
    model.add(layers.Dense(256, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))

    print(model.summary())
    return model

model=build_model()

tflite模型转换


converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("cifar10.tflite", "wb").write(tflite_model)

ESP32推理

本文采用的是2DCNN,添加所需的op算子即可

static tflite::MicroMutableOpResolver<5> resolver;
// 这里需要添加我们模型使用的层
if (resolver.AddReshape() != kTfLiteOk)
{
    ESP_LOGI(TAG, "Add reshape failed");
    return;
}

if (resolver.AddConv2D() != kTfLiteOk)
{
    ESP_LOGI(TAG, "Add reshape failed");
    return;
}

if (resolver.AddMaxPool2D() != kTfLiteOk)
{
    ESP_LOGI(TAG, "Add reshape failed");
    return;
}

if (resolver.AddFullyConnected() != kTfLiteOk)
{
    ESP_LOGI(TAG, "Add reshape failed");
    return;
}

if (resolver.AddSoftmax() != kTfLiteOk)
{
    ESP_LOGI(TAG, "Add reshape failed");
    return;
}

推理方案1:PC端JPG图片转换为数组

每一个像素点都有RGB三个数值,依次排开即可,以下为python的一段实例

from PIL import Image
import numpy as np

def image_to_c_array(image_path):
    # 读取图片
    image = Image.open(image_path)

    print(image.size)
    # 转换为numpy数组
    image_array = np.array(image)


    # 归一化
    # normalized_image_array = image_array / 255.0
    print(image_array.size)
    x_array_flatten = image_array.flatten()
    print(len(x_array_flatten))
    c_array_string = "{" + ", ".join(str(pixel) for pixel in x_array_flatten) + "}"

    with open("image_array.h", "w") as f:
        f.write("#ifndef IMAGE_ARRAY_H\n")
        f.write("#define IMAGE_ARRAY_H\n\n")
        f.write("const float image_array[] = %s;\n" % c_array_string)
        f.write("#endif\n")


# 调用函数生成.h文件
image_to_c_array("0042.jpg")

在这里插入图片描述

这样,我们可以直接将这个数组作为模型的输入去推理,记得归一化,除以255。

推理方案2:esp_jpeg解码jpg

size_t pic_buf_size = 32 * 32 * sizeof(uint32_t);
        uint8_t *pic_buf = (uint8_t *)heap_caps_malloc(pic_buf_size + 1, MALLOC_CAP_SPIRAM); // create out image buffer
        esp_jpeg_image_cfg_t jpeg_cfg = {
            .indata = (uint8_t *)file_buf,
            .indata_size = filesize,
            .outbuf = (uint8_t *)pic_buf,
            .outbuf_size = pic_buf_size,
            .out_format = JPEG_IMAGE_FORMAT_RGB888,
            .out_scale = JPEG_IMAGE_SCALE_0,
        };

        // // decode jpg
        esp_jpeg_image_output_t outimage;
        esp_jpeg_decode(&jpeg_cfg, &outimage);
        ESP_LOGI(TAG, "%s size: %d x %d", filename, outimage.width, outimage.height);

和上面python版本的一样,解码出来的pic_buf存放的也是每一个的像素,类似于这样

pic_buf[]= {像素0的R,像素0的G,像素0的B,像素1的R....}

所以在输入网络的时候,pic_buf的长度一定是图像宽图像高3,其中3为RGB,包括解码的时候选择RGB888

推理端的代码,记得归一化。

void cifar10_model_predict(const uint8_t *pic, int size)
{
    for (int i = 0; i < size; i++)
    {
        input->data.f[i] = pic[i] / 255.0f;
    }

    TfLiteStatus invoke_status = interpreter->Invoke();
    if (invoke_status != kTfLiteOk)
    {
        MicroPrintf("Invoke failed on");
        return;
    }

    for (int i = 0; i < 10; i++)
    {
        printf("%.2f ", output->data.f[i]);
    }
    printf("\n");
}
LiteOk)
    {
        MicroPrintf("Invoke failed on");
        return;
    }

    for (int i = 0; i < 10; i++)
    {
        printf("%.2f ", output->data.f[i]);
    }
    printf("\n");
}

可以看到推理结果还是挺不错的。
在这里插入图片描述

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 部署 TensorFlow Lite 模型ESP32 上需要进行以下步骤: 1. 将 TensorFlow Lite 模型转换为 ESP32 可识别的格式。可以使用 TensorFlow Lite for Microcontrollers 的转换器工具。 2. 将转换后的模型文件添加到 ESP32 项目中。可以使用 Arduino IDE 或 ESP-IDF 进行开发。 3. 在 setup 函数中,初始化 ESP32 的连接和模型。连接可以使用 Wi-Fi 或者蓝牙等方式建立,模型则需要使用 TensorFlow Lite 库进行初始化。 4. 在 loop 函数中,读取传感器数据或者用户输入,并使用模型进行推理,并输出结果。 下面是一个简单的示例代码: ```c++ #include <Arduino.h> #include "tensorflow/lite/micro/micro_error_reporter.h" #include "tensorflow/lite/micro/micro_interpreter.h" #include "tensorflow/lite/micro/kernels/all_ops_resolver.h" #include "tensorflow/lite/micro/testing/micro_test.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" // 定义 TensorFlow Lite 模型文件名 const char* model_filename = "/model.tflite"; // 定义输入和输出张量的维度和类型 const int kTensorArenaSize = 2 * 1024; uint8_t tensor_arena[kTensorArenaSize]; const int kInputTensorSize = 28 * 28 * 1; const int kOutputTensorSize = 10; const int kNumCols = 28; const int kNumRows = 28; const int kNumChannels = 1; // 定义 TensorFlow Lite 解释器和模型 tflite::MicroErrorReporter micro_error_reporter; tflite::MicroInterpreter micro_interpreter( tflite::MicroInterpreter::Build( g_model_data, g_model_data_size, micro_error_reporter, new tflite::MicroOpResolver)); // 定义输入和输出张量 TfLiteTensor* input = nullptr; TfLiteTensor* output = nullptr; void setup() { // 初始化 Wi-Fi 连接 // ... // 读取 TensorFlow Lite 模型文件 File file = SPIFFS.open(model_filename); size_t model_size = file.size(); uint8_t* model_data = new uint8_t[model_size]; file.read(model_data, model_size); file.close(); // 初始化 TensorFlow Lite 解释器和模型 micro_interpreter.AllocateTensors(); input = micro_interpreter.input(0); output = micro_interpreter.output(0); } void loop() { // 读取传感器数据或用户输入 // ... // 填充输入张量 float* input_data = input->data.f; for (int row = 0; row < kNumRows; ++row) { for (int col = 0; col < kNumCols; ++col) { for (int channel = 0; channel < kNumChannels; ++channel) { int pixel_value = 0; // 读取像素值 *input_data++ = static_cast<float>(pixel_value) / 255.0f; } } } // 运行模型 micro_interpreter.Invoke(); // 输出结果 float* output_data = output->data.f; int max_index = 0; float max_score = 0.0f; for (int i = 0; i < kOutputTensorSize; ++i) { if (output_data[i] > max_score) { max_index = i; max_score = output_data[i]; } } Serial.println("Predicted digit: " + String(max_index)); } ``` 这是一个简单的手写数字识别模型的示例代码,可以根据需要进行修改。在这个示例代码中,我们使用了 ESP32 的 Wi-Fi 连接,并从传感器读取像素值作为输入。在 loop 函数中,我们将像素值填充到输入张量中,并运行模型进行推理。最后,输出预测结果。 ### 回答2: TFLite模型是一个轻量级的机器学习模型格式,适用于在嵌入式设备上进行部署。将TFLite模型部署到ESP32中,可以通过以下步骤完成。 首先,确保你已经安装了Arduino IDE并设置好了ESP32的开发环境。 接下来,通过将TFLite模型转换为ESP32可接受的格式来准备模型。你可以使用TensorFlow Lite for Microcontrollers Python库来实现。通过该库,你可以导入你的模型并将其量化为TFLite模型,以便在ESP32上运行。 在Arduino IDE中创建一个新的项目,并在项目文件夹中导入包含TFLite模型的.h文件。 在"setup"函数中,你可以设置ESP32的初始化条件,例如设置串口通信、初始化WiFi连接等等。你还可以将模型加载到内存中,以便在"loop"函数中使用。 在"loop"函数中,你可以使用ESP32的传感器获取实时数据,并将其传递给模型进行推理。你需要将数据转换为与模型预期输入形状相匹配的格式。然后,调用模型推理函数,将输入数据传递给模型并获取结果。 最后,你可以在ESP32上执行一些操作,根据模型推理结果进行响应。例如,你可以通过LED灯或者蜂鸣器等设备来显示或者播放预测结果。 在这个过程中,你可能需要根据你的具体需求进行一些适配工作,例如选择适合你的传感器和设备以及模型的输入输出形状等等。 总结来说,将TFLite模型部署到ESP32中,需要将模型转换为ESP32可接受的格式,并通过Arduino IDE进行设置和循环函数的编程,以实现数据的采集、模型推理和结果的响应。 ### 回答3: 将 TensorFlow Lite (TFLite) 模型部署到 ESP32 即嵌入式设备,可以通过 Arduino IDE 来完成。以下是一种利用 `setup` 和 `loop` 函数的示例程式: 在 `setup` 函数中,我们需要进行一些初始化操作。首先,我们需要设置 ESP32 的连接方式,例如 Wi-Fi 连接。然后,我们需要加载 TFLite 模型文件,并配置输入和输出张量的指针。 ```cpp #include <Arduino.h> #include "tensorflow/lite/experimental/micro/kernels/all_ops_resolver.h" #include "tensorflow/lite/experimental/micro/micro_mutable_op_resolver.h" #include "tensorflow/lite/experimental/micro/micro_error_reporter.h" #include "tensorflow/lite/experimental/micro/micro_interpreter.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" // Wi-Fi 配置等初始化设置 void setup() { // ... // 加载 TFLite 模型文件 const uint8_t* model_data = YourModelData; // 替换为你的 TFLite 模型数据 const tflite::Model* model = tflite::GetModel(model_data); assert(model->version() == TFLITE_SCHEMA_VERSION); // 配置输入和输出张量的指针 TfLiteTensor* input = interpreter->input(0); TfLiteTensor* output = interpreter->output(0); } ``` 在 `loop` 函数中,我们可以编写我们的模型推理逻辑。通过设置输入张量的数据,我们可以执行模型推理,并获取输出张量的结果。 ```cpp // 执行模型推理逻辑 void loop() { // ... // 将输入张量数据设置为你的输入数据 float* input_data = input->data.f; // ... // 执行模型推理 TfLiteStatus invoke_status = interpreter->Invoke(); // 获取输出张量结果 float* output_data = output->data.f; // ... } ``` 需要注意的是,以上只是一个简单的示例。更复杂的模型可能需要更多的设置和配置。确保在开始之前,你已经下载并安装了适用于 ESP32 的 TensorFlow Lite for Microcontrollers 库。 希望这能帮助到你开始在 ESP32 上部署和运行 TFLite 模型

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值