深度学习——3D点云

深度学习点云综述文章

Deep Learning for 3D Point Clouds: A Survey中文翻译 - lakaka - 博客园 (cnblogs.com)

一文尽览 | 首篇Transformer在3D点云中的应用综述(检测/跟踪/分割/降噪/补全) - 知乎 (zhihu.com)

物体三维表达方式

img

点云应用

img

imgimg

点云处理任务

img

img

数据集

img

img

img

点云数据特征

img

  • 无序性:只是点而已,排列顺序不影响
  • 近密远疏的特性: 扫描与视角不同导致
  • 非结构化数据:直接CNN有点难

点云深度学习模型

Point cloud is converted to other representations before it’s fed to a deep neural network

img

体素化方法 Volumetric-based Methods

体素化方法将点云转换为致密的三维体素模型, 并对其应用三维卷积,以模仿和复制卷积神经网络在平面图像分析上的成功.然而三维卷积的计算量过大,这限制了处理模型的分辨率,使得在数据转换过程中损失了大量的模型细节

img

[1]

ZHOU Y, TUZEL O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection[M]. arXiv, 2017.

img

多视角图像渲染 Multi-view based Methods

  • 多视角图像渲染将三维数据渲染为多个视角下观察到的平面图像, 巧妙地解决了模型自遮挡的问题,但依然无法保证三维模型的全部细节不被遮挡,且计算量较大

  • img

  • [1]

SU H, MAJI S, KALOGERAKIS E, 等. Multi-view Convolutional Neural Networks for 3D Shape Recognition[M]. arXiv, 2015.

img

直接在点云上特征学习 Point-based Methods

Challenges

The model has to respect properties of point clouds:

• Unordered point set as input

Model needs to be invariant to N! permutations.

img

• Invariance under geometric transformations

Point cloud rotations should not alter classification results.

img

PointNet

img

img

PointNet++

img

点云数据可视化

CloudCompare

CloudCompare是一款3D点云处理软件(例如用激光扫描仪获得的点云)。它还可以处理三角形网格和校准图像。

MeshLab

MeshLab是三维立体网格处理软体,为自由软体,首先发布于2005年年底。此软体可显示及处理大量的非结构化网格,并提供编辑、清理、修复及查核等功能,可对模型进行渲染转档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ROJS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值