TensorFlow深度学习实战——基于语言模型的动态词嵌入技术

TensorFlow深度学习实战——基于语言模型的动态词嵌入技术

0. 前言

基于语言模型的词嵌入技术,通过利用上下文信息来生成动态的词向量,大大提升了词嵌入模型的表达能力。随着 BERTGPT 等大规模预训练模型的出现,基于语言模型的词嵌入在自然语言处理领域的应用变得越来越广泛,成为当前自然语言处理 (Natural Language Processing, NLP) 研究的一个重要方向。

1. 基于语言模型的词嵌入

语言模型是基于单词序列的概率分布,可以用于根据特定的单词序列预测最可能的下一个单词。与传统的词嵌入(无论是静态前软还是动态嵌入)类似,语言模型也会被训练在给定语料库中部分句子的情况下预测下一个单词(或者在双向语言模型中也可以预测前一个单词)。训练过程不涉及手动标签标注,因为它利用了大量文本的自然语法结构,所以在某种意义上,这是一种自监督学习过程。
语言模型作为词嵌入与传统嵌入的主要区别在于,传统嵌入应用为数据上的单一初始转换,然后针对特定任务进行微调。而语言模型是在大型外部语料库上训练的,并且代表了某种特定语言(如中文或英文)的模型。这一步骤称为预训练,预训练语言模型的计算成本通常相当高,下一步是为特

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值