OpenCV-Python实战(4)——OpenCV常见图像处理技术
0. 前言
图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务。因此,如果要构建计算机视觉项目,就需要对图像处理有足够的了解。在本文中,将介绍计算机视觉项目中常见的图像处理技术,主要包括图像的几何变换和图像滤波等。
1. 拆分与合并通道
再进行图像处理时,有时我们仅需要使用特定通道。因此,必须首先将多通道图像拆分为多个单通道图像,为了拆分通道,可以使用 cv2.split()
函数,cv2.split()
函数将源多通道图像拆分为多个单通道图像。此外,处理完成后,可能希望将多个的单通道图像合并创建为一个多通道图像,为了合并通道,可以使用 cv2.merge()
函数,cv2.merge()
函数将多个单通道图像合并为一个多通道图像。
使用 cv2.split()
函数,从加载的 BGR
图像中获取三个通道:
# 通道拆分
image