OpenCV-Python实战(4)——OpenCV常见图像处理技术

本文深入探讨了OpenCV-Python中的图像处理技术,包括拆分与合并通道、图像几何变换(如缩放、平移、旋转、仿射变换、透视变换和裁剪)以及图像滤波(如均值滤波、高斯滤波、中值滤波和双边滤波)。通过实例展示了如何使用OpenCV库实现这些操作,以用于计算机视觉项目。
摘要由CSDN通过智能技术生成

0. 前言

图像处理技术是计算机视觉项目的核心,通常是计算机视觉项目中的关键工具,可以使用它们来完成各种计算机视觉任务。因此,如果要构建计算机视觉项目,就需要对图像处理有足够的了解。在本文中,将介绍计算机视觉项目中常见的图像处理技术,主要包括图像的几何变换和图像滤波等。

1. 拆分与合并通道

再进行图像处理时,有时我们仅需要使用特定通道。因此,必须首先将多通道图像拆分为多个单通道图像,为了拆分通道,可以使用 cv2.split() 函数,cv2.split() 函数将源多通道图像拆分为多个单通道图像。此外,处理完成后,可能希望将多个的单通道图像合并创建为一个多通道图像,为了合并通道,可以使用 cv2.merge() 函数,cv2.merge() 函数将多个单通道图像合并为一个多通道图像。
使用 cv2.split() 函数,从加载的 BGR 图像中获取三个通道:

# 通道拆分
image 
OpenCV(Open Source Computer Vision)是一个开源的计算机视觉库,提供了许多图像处理和计算机视觉算法的实现。它使用C++语言编写,但也提供了Python等其他编程语言的接口。 在图像处理方面,OpenCV提供了一系列的功能和算法,包括图像读取和保存、图像的基本操作(如裁剪、缩放、旋转等)、图像滤波(如均值滤波、高斯滤波等)、图像边缘检测(如Sobel、Canny等)、图像分割(如阈值分割、基于区域的分割等)以及图像特征提取(如HOG特征、SIFT特征等)等等。 OpenCV图像处理原理基于数字图像处理的基本原理。它首先将图像表示为一个矩阵,其中每个元素表示图像中的一个像素。然后,通过对这个矩阵进行各种操作和算法,实现不同的图像处理任务。 例如,对于图像滤波,OpenCV使用卷积操作来实现。卷积操作通过将一个滤波器与图像进行卷积运算,来实现图像的平滑、边缘增强等效果。在边缘检测中,OpenCV使用不同的算子(如Sobel算子、Canny算子)来检测图像中的边缘。而在图像分割中,OpenCV通过阈值分割、区域生长等算法来将图像分成不同的区域。 除了以上提到的基本图像处理原理,OpenCV还提供了许多其他的功能和算法,如形态学操作、图像配准、特征匹配、光流估计等,以满足不同应用场景下的需求。 总之,OpenCV是一个强大的图像处理库,它基于数字图像处理的原理,提供了丰富的功能和算法,可以在计算机视觉和图像处理任务中发挥重要作用。
评论 182
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值