Keras深度学习实战(28)——利用单词向量构建情感分析模型

本文介绍了如何使用Keras和CBOW模型构建情感分析模型。通过获取单词向量,对航空公司评论数据进行情感分类,模型在测试集上达到了较高的准确率。此外,还探讨了其他单词向量模型对情感分析任务的应用。
摘要由CSDN通过智能技术生成

0. 前言

在获取单词向量的相关博文中,我们学习了多种不同的神经网络模型用于生成单词向量。在本节中,我们将进一步利用获取到的单词向量,学习如何构建情感分类器分析给定的文本。

1. 模型与数据集分析

1.1 模型分析

使用在《使用 CBOW 模型构建单词向量》一节中介绍的单词向量构建模型 CBOW 获取单词向量,并利用得到的单词向量构建情感分类模型,预测用户的评论属于正面评价、负面评价或者中立评价。

1.2 数据集分析

下一小节,我们将实现 CBOW 模型生成单词向量,然后利用获得的单词向量构建情感分析模型,所用的数据集与在《从零开始构建单词向量》一节中使用的数据集相同,即航空公司 Twitter 数据集,模型的目标是预测用户对于航空

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值