PyTorch生成式人工智能(14)——条件生成对抗网络(conditional GAN,cGAN)

0. 前言

我们使用深度卷积生成对抗网络 (Deep Convolution Generative Adversarial Network, DCGAN) 生成的动漫面孔看起来非常逼真,每张生成的图像都有不同的特征,比如头发颜色、眼睛颜色,以及头部朝左或朝右倾斜。
在本节中,将学习两种选择生成图像中特征的方法及其各自的优缺点。第一种方法是选择潜空间中的特定向量,不同的向量对应不同的特征——例如,一个向量可能生成男性面孔,而另一个则生成女性面孔。第二种方法使用条件生成对抗网络 (conditional GAN, cGAN),即在带有标签的数据上训练模型。这使得我们可以通过向模型传递标签生成具有特定标签的图像,每个标签代表一个独特的特征——比如有眼镜或无眼镜的面孔。
此外,还将学习如何将这两种方法结合使用,以便同时选择图像的两个独立属性。通过这种方式,可以生成四种不同的图像类型:戴眼镜的男性、未戴眼镜的男性、戴眼镜的女性和未戴眼镜的女性。还可以使用标签的加权平均或输入向量的加权平均,生成从一个属性到另一个属性过渡的图像。例如,可以生成一系列图像,使得同一个人脸上的眼镜逐渐消失(标签运算)。或者可以生成一系列图像,使得男性特征逐渐消失,男性面孔变为女性面孔(向量运算)。

1. eyeglasses 数据集

1.1 下

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值