Transformer实战——指令微调嵌入模型
0. 前言
传统文本表示模型在跨领域、多任务场景中常因“相似性”定义差异而受限。指令微调通过动态任务指令,使单一模型灵活适配不同需求。以 Instructor 模型为例,其核心在于指令模板设计:用户通过指定文本类型和任务目标,即可生成任务定制的嵌入。在本节中,我们将介绍指令微调嵌入。指令微调嵌入不仅关注文本的表示,还使我们能够利用指令进行处理。
1. 指令微调嵌入模型
一个单一的文本表示模型可以针对特定任务进行训练。例如,训练一个用于语义表示的模型,可能不适合表示自然科学文本,因为在这一领域内,相似性的定义不同于语义相似性。指令微调能够使同一模型解决多种不同问题,Instructor 模型是流行的指令微调模型。在本节中,我们将介绍如何使用 Instructor 模型。
2. 使用 Instructor 模型
可以使用 Hugging Face transformers 或 InstructEmbedding 库导入 Instructor 模型。使用两个库都可以得到相同的结果,但后者使用起来更加方便。
(1) 首先使用 pip 命令安装 InstructEmbedding 库:
pip in
订阅专栏 解锁全文
4627





