Transformer实战——指令微调嵌入模型

Transformer实战——指令微调嵌入模型

0. 前言

传统文本表示模型在跨领域、多任务场景中常因“相似性”定义差异而受限。指令微调通过动态任务指令,使单一模型灵活适配不同需求。以 Instructor 模型为例,其核心在于指令模板设计:用户通过指定文本类型和任务目标,即可生成任务定制的嵌入。在本节中,我们将介绍指令微调嵌入。指令微调嵌入不仅关注文本的表示,还使我们能够利用指令进行处理。

1. 指令微调嵌入模型

一个单一的文本表示模型可以针对特定任务进行训练。例如,训练一个用于语义表示的模型,可能不适合表示自然科学文本,因为在这一领域内,相似性的定义不同于语义相似性。指令微调能够使同一模型解决多种不同问题,Instructor 模型是流行的指令微调模型。在本节中,我们将介绍如何使用 Instructor 模型。

2. 使用 Instructor 模型

可以使用 Hugging Face transformersInstructEmbedding 库导入 Instructor 模型。使用两个库都可以得到相同的结果,但后者使用起来更加方便。

(1) 首先使用 pip 命令安装 InstructEmbedding 库:

pip in
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值