RK3588多核NPU并行加速完整教程:基于线程池的高性能AI推理实现

文章目录
引言
随着人工智能应用场景的不断扩展,对AI推理性能的要求日益提高。传统的单线程推理方式在面对高并发需求时往往显得力不从心,无法充分发挥现代AI芯片的多核优势。RK3588作为瑞芯微的旗舰级AIoT平台,集成了三个独立的NPU核心,总算力达到6TOPS,为高性能AI推理提供了强大的硬件基础。
本教程将深入探讨如何在RK3588平台上实现基于线程池的多核NPU并行加速方案,从理论原理到实践代码,帮助开发者充分挖掘硬件潜力,实现AI推理性能的显著提升。通过本教程的学习,读者将掌握多线程AI推理系统的设计思路、实现方法以及性能优化策略。
RK3588 NPU多核心架构深度解析
NPU硬件架构特点
RK3588的NPU子系统采用了先进的多核心并行设计,每个NPU核心都是完全独立的计算单元:
1. 三核心独立处理能力
RK3588包含3个NPU核心,每个核心都具备独立的计算能力,理论算力为2TOPS/核心。这种设计允许:
- 三个核心同时工作,实现真正的并行处理
- 双核合作处理大型模型
- 单核独立工作,优化功耗
// NPU核心配置信息结构
struct
RK3588部署YOLO模型及多核NPU加速教程
订阅专栏 解锁全文
618

被折叠的 条评论
为什么被折叠?



